微电子学, 2022, 52 (3): 459, 网络出版: 2023-01-18  

GaN基同型异质结IMPATT二极管噪声特性研究

Study on Noise Performance of a GaN Homo-Heterojunction IMPATT Diode
作者单位
1 西北大学 信息科学与技术学院, 西安 710127
2 上海精密计量测试研究所, 上海 201109
3 西安电子科技大学 微电子学院, 西安 710071
摘要
针对p型GaN IMPATT制造工艺仍未成熟,提出了一种In04Ga06N/GaN n-n型异质结构来取代常规p-n结构,使GaN IMPATT二极管工作在IMPATT模式下。研究了这种n-n型In04Ga06N/GaN碰撞电离雪崩渡越时间(IMPATT)二极管的噪声特性,与同等条件下的传统GaN基p-n结IMPATT二极管作比较。结果表明,在不同偏置电流密度和不同InGaN层厚度下,该器件的噪声特性均好于传统p-n结构。结合器件交流输出特性可以得知,In04Ga06N/GaN同型异质结IMPATT器件不仅在功率效率上优于GaN p-n结构,其噪声性能表现亦优于传统GaN p-n结构,特别是在高频段的噪声特性优势更加明显。该研究可以为GaN基IMPATT器件的设计提供更多的思路和参考。
Abstract
Due to the immature of the p-type GaN IMPATT manufacturing process, an In04Ga06N/GaN n-ntype heterostructure was proposed to replace the conventional p-n structure, and made the GaN IMPATT diode work in IMPATT mode. The noise characteristics of the n-n type In04Ga06N/GaN IMPATT diode were studied and compared with the conventional GaN based p-n junction IMPATT diode under the same conditions. The results showed that the noise characteristics of the device with different bias current density and different thickness of InGaN layer were better than those of conventional p-n structure. Combined with the RF output characteristics of the device, it could be found that the In04Ga06N/GaN homo-heterojunction IMPATT device was not only superior to the GaN p-n structure in power and efficiency, but also superior to the conventional GaN p-n structure in noise performance, especially in the high frequency band. This work could provide more ideas and references for the design of GaN based IMPATT devices.
参考文献

[1] SARIEDDEEN H, SAEED N, AL-NAFFOURI T Y, et al. Next generation terahertz communications:a rendezvous of sensing, imaging, and localization [J]. IEEE Commun Mag, 2020, 58(5): 69-75.

[2] NAGATSUMA T, DUCOURNAU G, RENAUD C C. Advances in terahertz communications accelerated by photonics [J]. Nat Photonics, 2016, 10(6): 371-379.

[3] ALEKSANDER S, DAMJAN B, MIHA G, et al. A THz receiver with novel features and functionality [J]. Sensors-Basel, 2018, 18(11): 3793.

[4] CHEN K J, HBERLEN O, LIDOW A, et al.GaN-on-Si power technology: devices and applications [J]. IEEE Trans Elec Dev, 2017, 64(3): 779-795.

[5] LO I. Advances in GaN crystals and their applications [J]. Crystals, 2018, 8(3): 117.

[6] CAO L, YE H, WANG J, et al. W-band GaN IMPATT diodes for high power millimeter-wave generation [C]// IEEE NAECON. Dayton, OH, USA. 2019: 728-731.

[7] DONG J, ERCAN B, JIA Z, et al. Demonstration of GaN impact ionization avalanche transit-time (IMPATT) diode. [C]// DRC. Columbus, OH, USA. 2020: 1-2.

[8] KE W C, LEE S J, CHEN S L, et al. Effects of growth conditions on the acceptor activation of Mg-doped p-GaN [J]. Mater Chem Phys, 2012, 133(2-3): 1029-1033.

[9] TRIPATHY P R, CHOUDHURY S K, PATI S P. A new model of heterostructure GaAs/Ge IMPATT diode at W-band frequency [C]// DAE Sol Sta Phys Symp. 2017: 1-3.

[10] LI X, YANG L, MA X, et al. A new lattice-matched In017Al083N~GaN based heterostructure IMPATT diode for terahertz application [J]. Semicond Sci Tech, 2019, 34(11): 115011.

[11] PANDA A K, PAVLIDIS D, ALEKSEEV E A. Noise characteristics of GaN-based IMPATTs [J]. IEEE Trans Elec Dev, 2001, 48(7): 1473-1475.

[12] DHAR R, MUKHOPADHAY S J, MITRA M. A study on the noise performance of an Si based IMPATT device for different junction temperature [C]// IEEE Calcutta Conf (CALCON). Kolkata, India. 2020: 148-151.

[13] LI X S, YANG L A, ZHANG X Y, et al.GaN/AlxGa1-xN/GaN heterostructure IMPATT diode for D-band applications [J]. Appl Phys A-Mater, 2019, 125(3): 205.

[14] REKLAITIS A, REGGIANI L. Monte Carlo study of hot-carrier transport in bulk wurtzite GaN and modeling of a near-terahertz impact avalanche transit time diode [J]. J Appl Phys, 2004, 95(12): 7925-7935.

[15] YANG L A, HAO Y, YAO Q, et al. Improvednegative differential mobility model of GaN and AlGaN for a terahertz Gunn diode [J]. IEEE Trans Elec Dev, 2011, 58(4): 1076-1083.

[16] GOLDBERG Y, LEVINSHTEIN M E, RUMYANTSEV S L.Properties of advanced semiconductor materials: GaN, AIN, InN, BN, SiC, SiGe [M]. New York: Wiley, 2001: 93-146.

[17] VERHULST A S, VANDENBERGHE W G, MAEX K, et al.Boosting the on-current of a n-channel nanowire tunnel field-effect transistor by source material optimization [J]. J Appl Phys, 2008, 104(6): 494-82.

[18] VERHULST A S, LEONELLI D, ROOYACKERS R, et al. Drain voltage dependent analytical model of tunnel field-effect transistors [J]. J Appl Phys, 2011, 110(2): 347.

[19] KANE E O. Theory of tunneling [J]. J Appl Phys, 1961, 32(1): 83-91.

[20] ELTA M E, HADDAD G I. Mixed tunneling and avalanche mechanisms in p-n junctions and their effects on microwave transit-time devices [J]. IEEE Trans Elec Dev, 1978, 25(6): 694-702.

[21] BONANI F, GHIONE G. Noise in semiconductor devices-modeling and simulation [M]. Berlin: Springer, 2001: 1-38.

戴扬, 党江涛, 叶青松, 卢昭阳, 张为伟, 雷晓艺, 赵胜雷, 赵武. GaN基同型异质结IMPATT二极管噪声特性研究[J]. 微电子学, 2022, 52(3): 459. DAI Yang, DANG Jiangtao, YE Qingsong, LU Zhaoyang, ZHANG Weiwei, LEI Xiaoyi, ZHAO Shenglei, ZHAO Wu. Study on Noise Performance of a GaN Homo-Heterojunction IMPATT Diode[J]. Microelectronics, 2022, 52(3): 459.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!