光学学报, 2022, 42 (17): 1716001, 网络出版: 2022-09-16   

宽禁带半导体光电材料及其应用研究 下载: 1514次特邀综述

Wide Band Gap Semiconductor Optoelectronic Materials and Their Applications
作者单位
1 浙江大学材料科学与工程学院,浙江 杭州 310027
2 浙江大学温州研究院,温州市光电及纳米新材料重点实验室,浙江 温州 325006
引用该论文

叶志镇, 王凤志, 陈芳, 陆杨丹. 宽禁带半导体光电材料及其应用研究[J]. 光学学报, 2022, 42(17): 1716001.

Zhizhen Ye, Fengzhi Wang, Fang Chen, Yangdan Lu. Wide Band Gap Semiconductor Optoelectronic Materials and Their Applications[J]. Acta Optica Sinica, 2022, 42(17): 1716001.

参考文献

[1] Klingshirn C. ZnO∶from basics towards applications[J]. Physica Status Solidi (b), 2007, 244(9): 3027-3073.

[2] Kołodziejczak-Radzimska A, Jesionowski T. Zinc oxide-from synthesis to application: a review[J]. Materials, 2014, 7(4): 2833-2881.

[3] Bagnall D M, Chen Y F, Shen M Y, et al. Room temperature excitonic stimulated emission from zinc oxide epilayers grown by plasma-assisted MBE[J]. Journal of Crystal Growth, 1998, 184/185: 605-609.

[4] Xu W Z, Ye Z Z, Zeng Y J, et al. ZnO light-emitting diode grown by plasma-assisted metal organic chemical vapor deposition[J]. Applied Physics Letters, 2006, 88(17): 173506.

[5] Jiao S J, Zhang Z Z, Lu Y M, et al. ZnO p-n junction light-emitting diodes fabricated on sapphire substrates[J]. Applied Physics Letters, 2006, 88(3): 031911.

[6] Liu W, Gu S L, Ye J D, et al. Blue-yellow ZnO homostructural light-emitting diode realized by metalorganic chemical vapor deposition technique[J]. Applied Physics Letters, 2006, 88(9): 092101.

[7] Zhang H H, Pan X H, Lu B, et al. Mg composition dependent band offsets of Zn1-xMgxO/ZnO heterojunctions[J]. Physical Chemistry Chemical Physics, 2013, 15(27): 11231-11235.

[8] Wassner T A, Laumer B, Maier S, et al. Optical properties and structural characteristics of ZnMgO grown by plasma assisted molecular beam epitaxy[J]. Journal of Applied Physics, 2009, 105(2): 023505.

[9] Park S H, Ahn D. Spontaneous and piezoelectric polarization effects in wurtzite ZnO/MgZnO quantum well lasers[J]. Applied Physics Letters, 2005, 87(25): 253509.

[10] Zhang H H, Pan X H, Li Y, et al. The role of band alignment in p-type conductivity of Na-doped ZnMgO: polar versus non-polar[J]. Applied Physics Letters, 2014, 104(11): 112106.

[11] Chen S S, Pan X H, Chen W, et al. The role of beryllium in the band structure of MgZnO∶lifting the valence band maximum[J]. Applied Physics Letters, 2014, 105(12): 122112.

[12] 潘新花. Sb掺杂制备p-ZnO及Si衬底Zn1-xMgxO外延薄膜和ZnMgO/ZnO量子阱的研究[D]. 杭州: 浙江大学, 2010: 121-131.

    PanX H. Investigation on Sb doping p-ZnO and Zn1-xMgxO epitaxial films, ZnMgO/ZnO MQWs grown on Si substrates[D]. Hangzhou: Zhejiang University, 2010: 121-131.

[13] Choi Y S, Kang J W, Hwang D K, et al. Recent advances in ZnO-based light-emitting diodes[J]. IEEE Transactions on Electron Devices, 2010, 57(1): 26-41.

[14] Gu X Q, Zhu L P, Ye Z Z, et al. Room-temperature photoluminescence from ZnO/ZnMgO multiple quantum wells grown on Si(111) substrates[J]. Applied Physics Letters, 2007, 91(2): 022103.

[15] Zhang H H, Pan X H, He H P, et al. Temperature dependence of exciton localization in ZnO/Zn1-xMgxO multiple quantum wells with different barrier compositions[J]. Optics Communications, 2014, 318: 37-40.

[16] Chen S S, Xu C X, Pan X H, et al. High internal quantum efficiency ZnO/ZnMgO multiple quantum wells prepared on GaN/sapphire templates for ultraviolet light emitting diodes[J]. Journal of Materials Chemistry C, 2019, 7(22): 6534-6538.

[17] Lotin A A, Novodvorsky O A, Zuev D A. Room-temperature stimulated emission in two-dimensional MgxZn1-xO/ZnO heterostructures under optical pumping[J]. Laser Physics Letters, 2013, 10(5): 055902.

[18] Janotti A, van de Walle C G. Fundamentals of zinc oxide as a semiconductor[J]. Reports on Progress in Physics, 2009, 72(12): 126501.

[19] Klingshirn C. ZnO∶material, physics and applications[J]. Chemphyschem, 2007, 8(6): 782-803.

[20] Guillén C, Herrero J. Optical, electrical and structural characteristics of Al∶ZnO thin films with various thicknesses deposited by DC sputtering at room temperature and annealed in air or vacuum[J]. Vacuum, 2010, 84(7): 924-929.

[21] Wen L, Sahu B B, Kim H R, et al. Study on the electrical, optical, structural, and morphological properties of highly transparent and conductive AZO thin films prepared near room temperature[J]. Applied Surface Science, 2019, 473: 649-656.

[22] Zhu B L, Wang C C, Xie T, et al. Highly transparent conductive ZnO films prepared by reactive RF sputtering with Zn/ZnO composite target[J]. Applied Physics A, 2021, 127(9): 668.

[23] Hassan A, Jin Y H, Chao F, et al. Dopant-driven enhancements in the optoelectronic properties of laser ablated ZnO∶Ga thin films[J]. Journal of Applied Physics, 2018, 123(16): 161401.

[24] Bruncko J, Šutta P, Netrvalová M, et al. Comparative study of ZnO thin film prepared by pulsed laser deposition-comparison of influence of different ablative lasers[J]. Vacuum, 2017, 138: 184-190.

[25] Zhao K, Xie J Y, Zhao Y D, et al. Investigation on transparent, conductive ZnO∶Al films deposited by atomic layer deposition process[J]. Nanomaterials, 2022, 12(1): 172.

[26] Gao Z N, Banerjee P. Review article: atomic layer deposition of doped ZnO films[J]. Journal of Vacuum Science & Technology A, 2019, 37(5): 050802.

[27] Ponja S D, Sathasivam S, Parkin I P, et al. Highly conductive and transparent gallium doped zinc oxide thin films via chemical vapor deposition[J]. Scientific Reports, 2020, 10: 638.

[28] Tsai C Y, Lai J D, Feng S W, et al. Characterizations and growth of textured well-faceted ZnO films by low-pressure chemical vapor deposition on ITO glass substrates[J]. Superlattices and Microstructures, 2017, 111: 1073-1081.

[29] Kennedy O W, Coke M L, White E R, et al. MBE growth and morphology control of ZnO nanobelts with polar axis perpendicular to growth direction[J]. Materials Letters, 2018, 212: 51-53.

[30] Dai K, Ying M J, Lian J, et al. Optical properties of polar thin films: ZnO (0001) and ZnO (000-1) on sapphire substrate[J]. Optical Materials, 2019, 94: 272-276.

[31] Shahid M U, Deen K M, Ahmad A, et al. Formation of Al-doped ZnO thin films on glass by sol-gel process and characterization[J]. Applied Nanoscience, 2016, 6(2): 235-241.

[32] Morita Y, Ohtani N. Fabrication of aluminum and gallium codoped ZnO multilayer transparent conductive films by spin coating method and discussion about improving their performance[J]. Japanese Journal of Applied Physics, 2018, 57(2S2): 02CB03.

[33] Dimitrov D Z, Chen Z F, Marinova V, et al. ALD deposited ZnO∶Al films on mica for flexible PDLC devices[J]. Nanomaterials, 2021, 11(4): 1011.

[34] Ajimsha R S, Das A K, Misra P, et al. Observation of low resistivity and high mobility in Ga doped ZnO thin films grown by buffer assisted pulsed laser deposition[J]. Journal of Alloys and Compounds, 2015, 638: 55-58.

[35] Giri P, Chakrabarti P. Effect of Mg doping in ZnO buffer layer on ZnO thin film devices for electronic applications[J]. Superlattices and Microstructures, 2016, 93: 248-260.

[36] Gong L, Lu J G, Ye Z Z. Room-temperature growth and optoelectronic properties of GZO/ZnO bilayer films on polycarbonate substrates by magnetron sputtering[J]. Solar Energy Materials and Solar Cells, 2010, 94(7): 1282-1285.

[37] Nian Q, Zhang M Y, Schwartz B D, et al. Ultraviolet laser crystallized ZnO∶Al films on sapphire with high Hall mobility for simultaneous enhancement of conductivity and transparency[J]. Applied Physics Letters, 2014, 104(20): 201907.

[38] Lyubchyk A, Vicente A, Alves P U, et al. Influence of post-deposition annealing on electrical and optical properties of ZnO-based TCOs deposited at room temperature[J]. Physica Status Solidi (a), 2016, 213(9): 2317-2328.

[39] Mahmood K, Samaa B M. Influence of annealing treatment on structural, optical, electric, and thermoelectric properties of MBE-grown ZnO[J]. Journal of Experimental and Theoretical Physics, 2018, 126(6): 766-771.

[40] Yamada Y, Inoue S, Kikuchi H, et al. Resistivity reduction in Ga-doped ZnO films with a barrier layer that prevents Zn desorption[J]. Thin Solid Films, 2018, 657: 50-54.

[41] Ma J G, Lin D, Li P, et al. ZnO transparent conducting thin films codoped with anions and cations[J]. Chinese Science Bulletin, 2020, 65(25): 2678-2690.

[42] Zhang W, Gan J, Li L Q, et al. Tailoring of optical and electrical properties of transparent and conductive Al-doped ZnO films by adjustment of Al concentration[J]. Materials Science in Semiconductor Processing, 2018, 74: 147-153.

[43] 叶志镇, 唐晋发. 直流反应磁控溅射制备掺铟ZnO透明导电薄膜的研究[J]. 光学学报, 1988, 8(5): 448-453.

    Ye Z Z, Tang J F. Study of transparent conducting indium-doped ZnO films prepared by DC reactive magnetron sputtering[J]. Acta Optica Sinica, 1988, 8(5): 448-453.

[44] Ye Z Z, Tang J F. Transparent conducting indium doped ZnO films by DC reactive S-gun magnetron sputtering[J]. Applied Optics, 1989, 28(14): 2817-2819.

[45] Lei P, Chen X T, Yan Y, et al. Transparent and conductive IZO films: oxygen and discharge voltage controlled sputtering growth and properties[J]. Vacuum, 2022, 195: 110645.

[46] Tsai D C, Chang Z C, Kuo B H, et al. Thickness dependence of the structural, electrical, and optical properties of amorphous indium zinc oxide thin films[J]. Journal of Alloys and Compounds, 2018, 743: 603-609.

[47] Lu J G, Ye Z Z, Zeng Y J, et al. Structural, optical, and electrical properties of (Zn, Al)O films over a wide range of compositions[J]. Journal of Applied Physics, 2006, 100(7): 073714.

[48] Lu J G, Fujita S, Kawaharamura T, et al. Carrier concentration dependence of band gap shift in n-type ZnO∶Al films[J]. Journal of Applied Physics, 2007, 101(8): 083705.

[49] Gong L, Ye Z Z, Lu J G, et al. Highly transparent conductive and near-infrared reflective ZnO∶Al thin films[J]. Vacuum, 2010, 84(7): 947-952.

[50] Gu X Q, Zhu L P, Cao L, et al. Optical and electrical properties of ZnO∶Al thin films synthesized by low-pressure pulsed laser deposition[J]. Materials Science in Semiconductor Processing, 2011, 14(1): 48-51.

[51] Wang Y P, Lu J G, Bie X, et al. Transparent conductive Al-doped ZnO thin films grown at room temperature[J]. Journal of Vacuum Science & Technology A, 2011, 29(3): 031505.

[52] Jiang Q J, Lu J G, Yuan Y L, et al. Tailoring the morphology, optical and electrical properties of DC-sputtered ZnO∶Al films by post thermal and plasma treatments[J]. Materials Letters, 2013, 106: 125-128.

[53] Jiang Q J, Lu J G, Ye Z Z. Plasma-induced surface textures of ZnO∶Al transparent conductive films[J]. Vacuum, 2015, 111: 42-47.

[54] Agura H, Suzuki A, Matsushita T, et al. Low resistivity transparent conducting Al-doped ZnO films prepared by pulsed laser deposition[J]. Thin Solid Films, 2003, 445(2): 263-267.

[55] Ma Q B, Ye Z Z, He H P, et al. Structural, electrical, and optical properties of transparent conductive ZnO∶Ga films prepared by DC reactive magnetron sputtering[J]. Journal of Crystal Growth, 2007, 304(1): 64-68.

[56] Ma Q B, Ye Z Z, He H P, et al. Preparation and characterization of transparent conductive ZnO∶Ga films by DC reactive magnetron sputtering[J]. Materials Characterization, 2008, 59(2): 124-128.

[57] Ma Q B, Ye Z Z, He H P, et al. Effects of deposition pressure on the properties of transparent conductive ZnO∶Ga films prepared by DC reactive magnetron sputtering[J]. Materials Science in Semiconductor Processing, 2007, 10(4/5): 167-172.

[58] Gong L, Lu J G, Ye Z Z. Transparent and conductive Ga-doped ZnO films grown by RF magnetron sputtering on polycarbonate substrates[J]. Solar Energy Materials and Solar Cells, 2010, 94(6): 937-941.

[59] Ma Q B, Ye Z Z, He H P, et al. Influence of Ar/O2 ratio on the properties of transparent conductive ZnO∶Ga films prepared by DC reactive magnetron sputtering[J]. Materials Letters, 2007, 61(11/12): 2460-2463.

[60] Bie X, Lu J G, Gong L, et al. Transparent conductive ZnO∶Ga films prepared by DC reactive magnetron sputtering at low temperature[J]. Applied Surface Science, 2009, 256(1): 289-293.

[61] Ma Q B, Ye Z Z, He H P, et al. Influence of annealing temperature on the properties of transparent conductive and near-infrared reflective ZnO∶Ga films[J]. Scripta Materialia, 2008, 58(1): 21-24.

[62] Ma Q B, Ye Z Z, He H P, et al. Substrate temperature dependence of the properties of Ga-doped ZnO films deposited by DC reactive magnetron sputtering[J]. Vacuum, 2007, 82(1): 9-14.

[63] Gong L, Lu J G, Ye Z Z. Study on the structural, electrical, optical, adhesive properties and stability of Ga-doped ZnO transparent conductive films deposited on polymer substrates at room temperature[J]. Journal of Materials Science: Materials in Electronics, 2013, 24(1): 148-152.

[64] Mo G K, Liu J H, Lin G T, et al. Characterization of low resistivity Ga-doped ZnO thin films on Si substrates prepared by pulsed laser deposition[J]. Materials Research Express, 2019, 6(10): 106421.

[65] Cao L, Zhu L P, Chen W F, et al. Preparation and thermal stability of F-doped ZnO transparent conducting thin films[J]. Optical Materials, 2013, 35(6): 1293-1296.

[66] Cao L, Zhu L P, Jiang J, et al. Highly transparent and conducting fluorine-doped ZnO thin films prepared by pulsed laser deposition[J]. Solar Energy Materials and Solar Cells, 2011, 95(3): 894-898.

[67] Pham A T T, Ngo N M, Le O K T, et al. High-mobility sputtered F-doped ZnO films as good-performance transparent-electrode layers[J]. Journal of Science: Advanced Materials and Devices, 2021, 6(3): 446-452.

[68] Khuili M, El Hallani G, Fazouan N, et al. First-principles calculation of (Al, Ga) co-doped ZnO[J]. Computational Condensed Matter, 2019, 21: e00426.

[69] Mallick A, Basak D. Revisiting the electrical and optical transmission properties of co-doped ZnO thin films as n-type TCOs[J]. Progress in Materials Science, 2018, 96: 86-110.

[70] Wang Y F, Song J M, Zhang H R, et al. High optoelectronic performance of ZnO films co-doped with ternary functional elements of F, Al and Mg[J]. Journal of Alloys and Compounds, 2020, 822: 153688.

[71] Wang K L, Xin Y Q, Zhao J F, et al. High transmittance in IR region of conductive ITO/AZO multilayers deposited by RF magnetron sputtering[J]. Ceramics International, 2018, 44(6): 6769-6774.

[72] Kang D W, Kuk S H, Ji K S, et al. Effects of ITO precursor thickness on transparent conductive Al doped ZnO film for solar cell applications[J]. Solar Energy Materials and Solar Cells, 2011, 95(1): 138-141.

[73] Jiang Q J, Lu J G, Yuan Y L, et al. Enhancement of the light trapping by double-layered surface texture of ITO/AZO and AZO/AZO transparent conductive films[J]. Materials Letters, 2014, 123: 14-18.

[74] Gong L, Lu J G, Ye Z Z. Conductive Ga doped ZnO/Cu/Ga doped ZnO thin films prepared by magnetron sputtering at room temperature for flexible electronics[J]. Thin Solid Films, 2011, 519(11): 3870-3874.

[75] Wang Y P, Lu J G, Bie X, et al. Transparent conductive and near-infrared reflective Cu-based Al-doped ZnO multilayer films grown by magnetron sputtering at room temperature[J]. Applied Surface Science, 2011, 257(14): 5966-5971.

[76] Lu J G, Bie X, Wang Y P, et al. Transparent conductive and near-infrared reflective Ga-doped ZnO/Cu bilayer films grown at room temperature[J]. Journal of Vacuum Science & Technology A, 2011, 29(3): 03A115.

[77] Gong L, Lu J G, Ye Z Z. Transparent conductive Ga-doped ZnO/Cu multilayers prepared on polymer substrates at room temperature[J]. Solar Energy Materials and Solar Cells, 2011, 95(7): 1826-1830.

[78] Huang J J, Wang Y P, Lu J G, et al. Transparent conductive Al-doped ZnO/Cu bilayer films grown on polymer substrates at room temperature[J]. Chinese Physics Letters, 2011, 28(12): 255-258.

[79] Chen W H, Chou C Y, Li B J, et al. Conductive and transparent properties of ZnO/Cu/ZnO sandwich structure[J]. Journal of Electronic Materials, 2021, 50(3): 779-785.

[80] Manzen I, Yoshimura Y, Matsubara K, et al. Improvement of characteristics of flexible Al-doped ZnO/Ag/Al-doped ZnO transparent conductive film using silver[J]. Journal of Vacuum Science & Technology B, 2020, 38(2): 022205.

[81] Lin Q J, Zhang F Z, Zhao N, et al. Influence of annealing temperature on optical properties of sandwiched ZnO/metal/ZnO transparent conductive thin films[J]. Micromachines, 2022, 13(2): 296.

[82] Liu X N, Gao J, Gong J H, et al. Optoelectronic properties of an AZO/Ag multilayer employed as a flexible electrode[J]. Ceramics International, 2021, 47(4): 5671-5676.

[83] Jang C, Jiang Q J, Lu J G, et al. Structural, optical and electrical properties of Ga doped ZnO/Cu grid/Ga doped ZnO transparent electrodes[J]. Journal of Materials Science & Technology, 2015, 31(11): 1108-1110.

[84] 陆杨丹, 吕建国, 杨汝琪, 等. 透明导电AZO/铜网格复合膜及其电加热性能[EB/OL]. [2022-06-10]. https://wulixb.iphy.ac.cn/cn/article/doi/10.7498/aps.71.20220529.

    LuY D, LüJ G, YangR Q, et al. Transparent conductive AZO/Cu mesh composite film and its electric heating performance[EB/OL]. [2022-06-10]. https://wulixb.iphy.ac.cn/cn/article/doi/10.7498/aps.71.20220529.

[85] Wang C T, Ting C C, Kao P C, et al. Enhanced optical, electrical, and mechanical characteristics of ZnO/Ag grids/ZnO flexible transparent electrodes[J]. Journal of Applied Physics, 2017, 122(8): 085501.

[86] Jang C, Ye Z Z, Lü J G. Highly transparent low resistance Ga doped ZnO/Cu grid double layers prepared at room temperature[J]. Journal of Semiconductors, 2015, 36(12): 42-45.

[87] Li F S, Lin Z X, Zhang B B, et al. Fabrication of flexible conductive graphene/Ag/Al-doped zinc oxide multilayer films for application in flexible organic light-emitting diodes[J]. Organic Electronics, 2013, 14(9): 2139-2143.

[88] Yu S H, Zhao L, Liu R C, et al. Performance enhancement of Cu-based AZO multilayer thin films via graphene fence engineering for organic solar cells[J]. Solar Energy Materials and Solar Cells, 2018, 183: 66-72.

[89] Wang P, Chen Y, Hu Y, et al. Preparation and stability of AZO/AgNWs/AZO composite film[J]. China Ceramics, 2021, 57(6): 38.

[90] Duan Y H, Duan Y, Chen P, et al. High-performance flexible Ag nanowire electrode with low-temperature atomic-layer-deposition fabrication of conductive-bridging ZnO film[J]. Nanoscale Research Letters, 2015, 10: 90.

[91] Han X P, Huang Y, Wang J M, et al. Flexible hierarchical ZnO/AgNWs/carbon cloth-based film for efficient microwave absorption, high thermal conductivity and strong electro-thermal effect[J]. Composites Part B: Engineering, 2022, 229: 109458.

[92] Zhang L Q, Yang R, Chen K, et al. The fabrication of Cu nanowire/graphene/Al doped ZnO transparent conductive film on PET substrate with high flexibility and air stability[J]. Materials Letters, 2017, 207: 62-65.

[93] Das R, Das H S, Nandi P K, et al. Comparative studies on the properties of magnetron sputtered transparent conductive oxide thin films for the application in solar cell[J]. Applied Physics A, 2018, 124(9): 631.

[94] Jeong J A, Park Y S, Kim H K. Comparison of electrical, optical, structural, and interface properties of IZO-Ag-IZO and IZO-Au-IZO multilayer electrodes for organic photovoltaics[J]. Journal of Applied Physics, 2010, 107(2): 023111.

[95] Chen X B, Xu G Y, Zeng G, et al. Realizing ultrahigh mechanical flexibility and >15% efficiency of flexible organic solar cells via a welding flexible transparent electrode[J]. Advanced Materials, 2020, 32(14): e1908478.

[96] Zhou Z X, Zhang Y L, Chen X L, et al. Innovative wide-spectrum Mg and Ga-codoped ZnO transparent conductive films grown via reactive plasma deposition for Si heterojunction solar cells[J]. ACS Applied Energy Materials, 2020, 3(2): 1574-1584.

[97] Zhao X, Li M, Jiang L P, et al. Preparation of device-level ZnO-covered silver nanowires films and their applications as sub-electrode for polymer solar cells[J]. Frontiers in Chemistry, 2021, 9: 683728.

[98] Jiang Q J, Lu J G, Zhang J, et al. Texture surfaces and etching mechanism of ZnO∶Al films by a neutral agent for solar cells[J]. Solar Energy Materials and Solar Cells, 2014, 130: 264-271.

[99] Gong L, Liu Y Z, Gu X Q, et al. Study on the thermal stability of Ga-doped ZnO thin film: a transparent conductive layer for dye-sensitized TiO2 nanoparticles based solar cells[J]. Materials Science in Semiconductor Processing, 2014, 26: 276-281.

[100] Shin Y H, Cho C K, Kim H K. Resistance and transparency tunable Ag-inserted transparent InZnO films for capacitive touch screen panels[J]. Thin Solid Films, 2013, 548: 641-645.

[101] Dimitrov D, Tsai C L, Petrov S, et al. Atomic layer-deposited Al-doped ZnO thin films for display applications[J]. Coatings, 2020, 10(6): 539.

[102] Chen D, Lu J G, Lu R K, et al. High-performance GaN-based LEDs with AZO/ITO thin films as transparent contact layers[J]. IEEE Transactions on Electron Devices, 2017, 64(6): 2549-2555.

[103] 陈丹, 吕建国, 黄靖云, 等. AZO薄膜用于GaN基LED透明电极的性能研究[J]. 无机材料学报, 2013, 28(6): 649-652.

    Chen D, Lü J G, Huang J Y, et al. Performances of GaN-based LEDs with AZO films as transparent electrodes[J]. Journal of Inorganic Materials, 2013, 28(6): 649-652.

[104] Zhang P, Zhang W, Wang J Y, et al. The electro-optic mechanism and infrared switching dynamic of the hybrid multilayer VO2/Al∶ZnO heterojunctions[J]. Scientific Reports, 2017, 7: 4425.

[105] Yan R L, Takahashi T, Zeng H, et al. Robust and electrically conductive ZnO thin films and nanostructures: their applications in thermally and chemically harsh environments[J]. ACS Applied Electronic Materials, 2021, 3(7): 2925-2940.

[106] Wang J P, Wang N N, Jin Y Z, et al. Interfacial control toward efficient and low-voltage perovskite light-emitting diodes[J]. Advanced Materials, 2015, 27(14): 2311-2316.

[107] Liu Y, Cui J Y, Du K, et al. Efficient blue light-emitting diodes based on quantum-confined bromide perovskite nanostructures[J]. Nature Photonics, 2019, 13(11): 760-764.

[108] Huang H W, Liu M, Li J, et al. Atomically thin cesium lead bromide perovskite quantum wires with high luminescence[J]. Nanoscale, 2017, 9(1): 104-108.

[109] Xu X L, He H P, Li J, et al. Embedded two-dimensional perovskite nanoplatelets with air-stable luminescence[J]. ACS Applied Materials & Interfaces, 2019, 11(8): 8436-8442.

[110] He H P, Yu Q Q, Li H, et al. Exciton localization in solution-processed organolead trihalide perovskites[J]. Nature Communications, 2016, 7: 10896.

[111] Gan L, He H P, Li S X, et al. Distinctive excitonic recombination in solution-processed layered organic-inorganic hybrid two-dimensional perovskites[J]. Journal of Materials Chemistry C, 2016, 4(43): 10198-10204.

[112] Fang Z S, He H P, Gan L, et al. Understanding the role of lithium doping in reducing nonradiative loss in lead halide perovskites[J]. Advanced Science, 2018, 5(12): 1800736.

[113] Li J, Gan L, Fang Z S, et al. Bright tail states in blue-emitting ultrasmall perovskite quantum dots[J]. The Journal of Physical Chemistry Letters, 2017, 8(24): 6002-6008.

[114] Li J, Yu Q Q, Lu B, et al. Ambience dependent photoluminescence reveals the localization and trap filling effects in CH3NH3PbI3-xClx perovskite films[J]. Journal of Materials Chemistry C, 2017, 5(1): 54-58.

[115] Li J, Yu Q Q, Gan L, et al. Perovskite light-emitting devices with a metal-insulator-semiconductor structure and carrier tunnelling[J]. Journal of Materials Chemistry C, 2017, 5(31): 7715-7719.

[116] Si J J, Liu Y, Wang N N, et al. Green light-emitting diodes based on hybrid perovskite films with mixed cesium and methylammonium cations[J]. Nano Research, 2017, 10(4): 1329-1335.

[117] He Z F, Liu Y, Yang Z L, et al. High-efficiency red light-emitting diodes based on multiple quantum wells of phenylbutylammonium-cesium lead iodide perovskites[J]. ACS Photonics, 2019, 6(3): 587-594.

[118] Cui J Y, Liu Y, Deng Y Z, et al. Efficient light-emitting diodes based on oriented perovskite nanoplatelets[J]. Science Advances, 2021, 7(41): eabg8458.

[119] Si J J, Liu Y, He Z F, et al. Efficient and high-color-purity light-emitting diodes based on in situ grown films of CsPbX3 (X=Br, I) nanoplates with controlled thicknesses[J]. ACS Nano, 2017, 11(11): 11100-11107.

[120] Li J, Si J J, Gan L, et al. Simple approach to improving the amplified spontaneous emission properties of perovskite films[J]. ACS Applied Materials & Interfaces, 2016, 8(48): 32978-32983.

[121] Jiang L, Fang Z S, Lou H R, et al. Achieving long carrier lifetime and high optical gain in all-inorganic CsPbBr3 perovskite films via top and bottom surface modification[J]. Physical Chemistry Chemical Physics, 2019, 21(39): 21996-22001.

[122] Li J, Zhou W, Jiang L, et al. Highly compact and smooth all-inorganic perovskite films for low threshold amplified spontaneous emission from additive-assisted solution processing[J]. Journal of Materials Chemistry C, 2019, 7(48): 15350-15356.

[123] Lu G C, Chen Z H, Fang Z S, et al. Mixed halide perovskite films by vapor anion exchange for spectrally stable blue stimulated emission[J]. Small, 2021, 17(39): e2103169.

[124] Akkerman Q A, Rainò G, Kovalenko M V, et al. Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals[J]. Nature Materials, 2018, 17(5): 394-405.

[125] Rudd P N, Huang J S. Metal ions in halide perovskite materials and devices[J]. Trends in Chemistry, 2019, 1(4): 394-409.

[126] Ou Q D, Li C, Wang Q K, et al. Recent advances in energetics of metal halide perovskite interfaces[J]. Advanced Materials Interfaces, 2017, 4(2): 1600694.

[127] Wang Y, Sun H D. All-inorganic metal halide perovskite nanostructures: from photophysics to light-emitting applications[J]. Small Methods, 2018, 2(1): 1700252.

[128] Li C, Wei J, Sato M, et al. Halide-substituted electronic properties of organometal halide perovskite films: direct and inverse photoemission studies[J]. ACS Applied Materials & Interfaces, 2016, 8(18): 11526-11531.

[129] Protesescu L, Yakunin S, Bodnarchuk M I, et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X=Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut[J]. Nano Letters, 2015, 15(6): 3692-3696.

[130] Kim H P, Kim J, Kim B S, et al. High-efficiency, blue, green, and near-infrared light-emitting diodes based on triple cation perovskite[J]. Advanced Optical Materials, 2017, 5(7): 1600920.

[131] Wang H L, Zhao X F, Zhang B H, et al. Blue perovskite light-emitting diodes based on RbX-doped polycrystalline CsPbBr3 perovskite films[J]. Journal of Materials Chemistry C, 2019, 7(19): 5596-5603.

[132] Karlsson M, Yi Z Y, Reichert S, et al. Mixed halide perovskites for spectrally stable and high-efficiency blue light-emitting diodes[J]. Nature Communications, 2021, 12: 361.

[133] Dong Y T, Wang Y K, Yuan F L, et al. Bipolar-shell resurfacing for blue LEDs based on strongly confined perovskite quantum dots[J]. Nature Nanotechnology, 2020, 15(8): 668-674.

[134] Bi C H, Yao Z W, Sun X J, et al. Perovskite quantum dots with ultralow trap density by acid etching-driven ligand exchange for high luminance and stable pure-blue light-emitting diodes[J]. Advanced Materials, 2021, 33(15): e2006722.

[135] Wu Y, Wei C T, Li X M, et al. In situ passivation of PbBr64- octahedra toward blue luminescent CsPbBr3 nanoplatelets with near 100% absolute quantum yield[J]. ACS Energy Letters, 2018, 3(9): 2030-2037.

[136] Akkerman Q A, Motti S G, Kandada A R S, et al. Solution synthesis approach to colloidal cesium lead halide perovskite nanoplatelets with monolayer-level thickness control[J]. Journal of the American Chemical Society, 2016, 138(3): 1010-1016.

[137] Yang D, Zou Y T, Li P L, et al. Large-scale synthesis of ultrathin cesium lead bromide perovskite nanoplates with precisely tunable dimensions and their application in blue light-emitting diodes[J]. Nano Energy, 2018, 47: 235-242.

[138] Hoye R L Z, Lai M L, Anaya M, et al. Identifying and reducing interfacial losses to enhance color-pure electroluminescence in blue-emitting perovskite nanoplatelet light-emitting diodes[J]. ACS Energy Letters, 2019, 4(5): 1181-1188.

[139] Ren Z W, Wang K, Sun X W, et al. Strategies toward efficient blue perovskite light-emitting diodes[J]. Advanced Functional Materials, 2021, 31(30): 2100516.

[140] Tam H W, Leung T L, Sun W T, et al. Phase control for quasi-2D blue emitters by spacer cation engineering[J]. Journal of Materials Chemistry C, 2020, 8(32): 11052-11060.

[141] Yuan S, Wang Z K, Xiao L X, et al. Optimization of low-dimensional components of quasi-2D perovskite films for deep-blue light-emitting diodes[J]. Advanced Materials, 2019, 31(44): e1904319.

[142] Jiang Y Z, Qin C C, Cui M H, et al. Spectra stable blue perovskite light-emitting diodes[J]. Nature Communications, 2019, 10: 1868.

[143] Hu J, Oswald I W H, Stuard S J, et al. Synthetic control over orientational degeneracy of spacer cations enhances solar cell efficiency in two-dimensional perovskites[J]. Nature Communications, 2019, 10(1): 1276.

[144] Chen Z M, Zhang C Y, Jiang X F, et al. High-performance color-tunable perovskite light emitting devices through structural modulation from bulk to layered film[J]. Advanced Materials, 2017, 29(8): 1603157.

[145] Wang Y K, Ma D X, Yuan F L, et al. Chelating-agent-assisted control of CsPbBr3 quantum well growth enables stable blue perovskite emitters[J]. Nature Communications, 2020, 11: 3674.

[146] Worku M, He Q Q, Xu L J, et al. Phase control and in situ passivation of quasi-2D metal halide perovskites for spectrally stable blue light-emitting diodes[J]. ACS Applied Materials & Interfaces, 2020, 12(40): 45056-45063.

[147] Peng L C, Geng J, Ai L S, et al. Room temperature synthesis of ultra-small, near-unity single-sized lead halide perovskite quantum dots with wide color emission tunability, high color purity and high brightness[J]. Nanotechnology, 2016, 27(33): 335604.

[148] Zhang F, Xiao C T, Li Y F, et al. Gram-scale synthesis of blue-emitting CH3NH3PbBr3 quantum dots through phase transfer strategy[J]. Frontiers in Chemistry, 2018, 6: 444.

[149] Deng J D, Xun J, Qin Y C, et al. Blue-emitting NH4+-doped MAPbBr3 perovskite quantum dots with near unity quantum yield and super stability[J]. Chemical Communications, 2020, 56(79): 11863-11866.

[150] Kong X B, Wu Y Q, Xu F, et al. Ultrasmall CsPbBr3 quantum dots with bright and wide blue emissions[J]. Physica Status Solidi: Rapid Research Letters, 2021, 15(7): 2100134.

[151] Shynkarenko Y, Bodnarchuk M I, Bernasconi C, et al. Direct synthesis of quaternary alkylammonium-capped perovskite nanocrystals for efficient blue and green light-emitting diodes[J]. ACS Energy Letters, 2019, 4(11): 2703-2711.

[152] Zheng X P, Yuan S, Liu J K, et al. Chlorine vacancy passivation in mixed halide perovskite quantum dots by organic pseudohalides enables efficient rec. 2020 blue light-emitting diodes[J]. ACS Energy Letters, 2020, 5(3): 793-798.

[153] Pan G C, Bai X, Xu W, et al. Bright blue light emission of Ni2+ ion-doped CsPbClxBr3-x perovskite quantum dots enabling efficient light-emitting devices[J]. ACS Applied Materials & Interfaces, 2020, 12(12): 14195-14202.

[154] Song J Z, Li J H, Li X M, et al. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3)[J]. Advanced Materials, 2015, 27(44): 7162-7167.

[155] Xun J, Deng J D, Shen W, et al. Rapid synthesis of highly stable all-inorganic perovskite nanocrystals exhibiting strong blue luminescence[J]. Journal of Alloys and Compounds, 2021, 872: 159612.

[156] Park Y R, Kim H H, Eom S, et al. Luminance efficiency roll-off mechanism in CsPbBr3-xClx mixed-halide perovskite quantum dot blue light-emitting diodes[J]. Journal of Materials Chemistry C, 2021, 9(10): 3608-3619.

[157] Ochsenbein S T, Krieg F, Shynkarenko Y, et al. Engineering color-stable blue light-emitting diodes with lead halide perovskite nanocrystals[J]. ACS Applied Materials & Interfaces, 2019, 11(24): 21655-21660.

[158] Shao H, Zhai Y, Wu X F, et al. High brightness blue light-emitting diodes based on CsPb(Cl/Br)3 perovskite QDs with phenethylammonium chloride passivation[J]. Nanoscale, 2020, 12(21): 11728-11734.

[159] Zhang F, Zhang X, Wang C H, et al. Chlorine distribution management for spectrally stable and efficient perovskite blue light-emitting diodes[J]. Nano Energy, 2021, 79: 105486.

[160] Zhang B B, Yuan S, Ma J P, et al. General mild reaction creates highly luminescent organic-ligand-lacking halide perovskite nanocrystals for efficient light-emitting diodes[J]. Journal of the American Chemical Society, 2019, 141(38): 15423-15432.

[161] Ye F H, Zhang H J, Wang P, et al. Spectral tuning of efficient CsPbBrxCl3-x blue light-emitting diodes via halogen exchange triggered by benzenesulfonates[J]. Chemistry of Materials, 2020, 32(7): 3211-3218.

[162] Shin Y S, Yoon Y J, Lee K T, et al. Vivid and fully saturated blue light-emitting diodes based on ligand-modified halide perovskite nanocrystals[J]. ACS Applied Materials & Interfaces, 2019, 11(26): 23401-23409.

[163] Hou S C, Gangishetty M K, Quan Q M, et al. Efficient blue and white perovskite light-emitting diodes via Manganese doping[J]. Joule, 2018, 2(11): 2421-2433.

[164] Yang F, Chen H T, Zhang R, et al. Efficient and spectrally stable blue perovskite light-emitting diodes based on potassium passivated nanocrystals[J]. Advanced Functional Materials, 2020, 30(10): 1908760.

[165] Todorović P, Ma D X, Chen B, et al. Spectrally tunable and stable electroluminescence enabled by rubidium doping of CsPbBr3 nanocrystals[J]. Advanced Optical Materials, 2019, 7(24): 1901440.

[166] Meng F Y, Liu X Y, Cai X Y, et al. Incorporation of rubidium cations into blue perovskite quantum dot light-emitting diodes via FABr-modified multi-cation hot-injection method[J]. Nanoscale, 2019, 11(3): 1295-1303.

[167] Pan J Y, Zhao Z H, Fang F, et al. Multiple cations enhanced defect passivation of blue perovskite quantum dots enabling efficient light-emitting diodes[J]. Advanced Optical Materials, 2020, 8(24): 2001494.

[168] Yao E P, Yang Z L, Meng L, et al. High-brightness blue and white LEDs based on inorganic perovskite nanocrystals and their composites[J]. Advanced Materials, 2017, 29(23): 1606859.

[169] Chen F, Xu L M, Li Y, et al. Highly efficient sky-blue light-emitting diodes based on Cu-treated halide perovskite nanocrystals[J]. Journal of Materials Chemistry C, 2020, 8(38): 13445-13452.

[170] Chen F, Liu Y L, Salerno M. Dispersing solvent effect on halide perovskite nanocrystals-based films and devices[J]. Journal of Materials Science, 2022, 57(3): 1902-1913.

[171] Li G R, Rivarola F W R, Davis N J L K, et al. Highly efficient perovskite nanocrystal light-emitting diodes enabled by a universal crosslinking method[J]. Advanced Materials, 2016, 28(18): 3528-3534.

[172] Gangishetty M K, Hou S C, Quan Q M, et al. Reducing architecture limitations for efficient blue perovskite light-emitting diodes[J]. Advanced Materials, 2018, 30(20): e1706226.

[173] Shin Y S, Yoon Y J, Heo J, et al. Functionalized PFN-X (X=Cl, Br, or I) for balanced charge carriers of highly efficient blue light-emitting diodes[J]. ACS Applied Materials & Interfaces, 2020, 12(31): 35740-35747.

[174] Ma D X, Todorović P, Meshkat S, et al. Chloride insertion-immobilization enables bright, narrowband, and stable blue-emitting perovskite diodes[J]. Journal of the American Chemical Society, 2020, 142(11): 5126-5134.

[175] Wang C H, Han D B, Wang J H, et al. Dimension control of in situ fabricated CsPbClBr2 nanocrystal films toward efficient blue light-emitting diodes[J]. Nature Communications, 2020, 11: 6428.

[176] Kim Y C, An H J, Kim D H, et al. High‐performance perovskite-based blue light-emitting diodes with operational stability by using organic ammonium cations as passivating agents[J]. Advanced Functional Materials, 2021, 31(5): 2005553.

[177] Vashishtha P, Ng M, Shivarudraiah S B, et al. High efficiency blue and green light-emitting diodes using ruddlesden-popper inorganic mixed halide perovskites with butylammonium interlayers[J]. Chemistry of Materials, 2019, 31(1): 83-89.

[178] Shen Y, Shen K C, Li Y Q, et al. Interfacial potassium-guided grain growth for efficient deep-blue perovskite light-emitting diodes[J]. Advanced Functional Materials, 2021, 31(6): 2006736.

[179] Yantara N, Jamaludin N F, Febriansyah B, et al. Designing the perovskite structural landscape for efficient blue emission[J]. ACS Energy Letters, 2020, 5(5): 1593-1600.

[180] Li Z C, Chen Z M, Yang Y C, et al. Modulation of recombination zone position for quasi-two-dimensional blue perovskite light-emitting diodes with efficiency exceeding 5%[J]. Nature Communications, 2019, 10: 1027.

[181] Hu H W, Salim T, Chen B B, et al. Molecularly engineered organic-inorganic hybrid perovskite with multiple quantum well structure for multicolored light-emitting diodes[J]. Scientific Reports, 2016, 6: 33546.

叶志镇, 王凤志, 陈芳, 陆杨丹. 宽禁带半导体光电材料及其应用研究[J]. 光学学报, 2022, 42(17): 1716001. Zhizhen Ye, Fengzhi Wang, Fang Chen, Yangdan Lu. Wide Band Gap Semiconductor Optoelectronic Materials and Their Applications[J]. Acta Optica Sinica, 2022, 42(17): 1716001.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!