光谱学与光谱分析, 2023, 43 (1): 213, 网络出版: 2023-03-28  

巴基斯坦斯瓦特山谷祖母绿的谱学特征研究

Spectroscopy Characteristics of Emerald From Swat Valley, Pakistan
作者单位
1 中国地质大学(武汉)珠宝学院, 湖北 武汉 430074
2 滇西应用技术大学珠宝学院, 云南 大理 671000
摘要
随着哥伦比亚祖母绿矿的日益枯竭, 巴基斯坦祖母绿逐渐成为市场的主力军之一, 运用常规宝石学仪器、 红外光谱仪、 激光拉曼光谱仪、 紫外-可见-近红外光谱仪(UV-Vis-Nir)和激光剥蚀电感耦合等离子体质谱仪(LA-ICP-MS)对巴基斯坦斯瓦特产区的祖母绿谱学特征进行了较系统的研究。 结果表明, 巴基斯坦斯瓦特祖母绿颜色整体呈深绿色-深蓝绿色, 折射率较高为1.589~1.615。 巴基斯坦斯瓦特产区的祖母绿中含有种类和数量较多的内含物, 其中三相内含物呈边界清晰平直的矩形且具有明显定向性, 与俄罗斯、 赞比亚和埃塞俄比亚产区祖母绿的三相内含物接近。 根据同一样品不同颜色的紫外-可见-近红外光谱和LA-ICP-MS的分析表明, 在颜色较深的区域, 紫外-可见-近红外光谱显示相对较强的427, 608, 637和679 nm(o光)Cr的R线吸收以及在o光下370 nm Fe的吸收, 同时此区域内Cr和Fe含量相对较高, 因此祖母绿色带是由含量不同的Cr和Fe所致。 巴基斯坦斯瓦特祖母绿是由Cr致色, V对颜色有一定贡献且Cr/V极高。 根据LA-ICP-MS结合红外光谱可知, 巴基斯坦斯瓦特祖母绿属于富碱祖母绿, 在红外光谱的指纹区显示了与一般祖母绿相同的振动吸收峰, 在中红外区4 000~2 000 cm-1, 低强度3 518和3 700 cm-1为Ⅰ型水不对称伸缩振动, 其他的水谱带饱和; 中等强度的3 232 cm-1为[Fe2(OH)4]2+多聚合离子吸收谱带; 在8 000~5 000 cm-1近红外光谱区, 在垂直于c轴的方向上, 5 264 cm-1为Ⅰ/Ⅱ型水ν3+ν2合频吸收带, 中等7 097 cm-1为Ⅱ型水倍频振动峰、 弱的7 187和6 842 cm-1为Ⅰ型水倍频振动峰; 在平行c轴方向上, 5 272 cm-1为Ⅰ/Ⅱ型水ν3+ν2合频吸收带, 7 073 cm-1为Ⅰ型水的合频振动峰, 7 185 cm-1为Ⅱ型水的倍频振动峰。 总之, 巴基斯坦斯瓦特山谷的祖母绿的主要致色离子为Cr3+和Fe3+, 碱金属离子含量偏高, 属于Ⅱ型水为主的祖母绿类型。
Abstract
With the exhaustion of Colombian emerald mins, the emeralds from Swat vally, Pakistan have gradually dominated the market and the systematic research for emeralds from Swat valley, Pakistan is conducted by using conventional gemological instruments, infrared spectrum, Raman spectrum, UV-Vis-Nir spectrum and Laser Ablation (Microprobe) Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS). The results show that the color of emerald from swat is dark green to dark bluish green, and the refractive index is 1.589~1.615. There are many kinds and quantities of inclusions in the emeralds from Swat, Pakistan. And the three-phase inclusions are rectangular with a clear boundary and obvious orientation, which is close to the three-phase inclusions in the emeralds from Russia, Zambia and Ethiopia. According to the UV-Vis-Nir spectroscopy and LA-ICP-MS analysis of the same sample with different colors, the UV-Vis-Nir spectroscopy show relatively strong R line absorption of 427, 608, 637 and 679 nm (O light) belonging to Cr in the dark region and absorption of 370 nm belonging to Fe in the o light, and the content of Cr and Fe in this region is relatively high. So emerald bands are caused by different amounts of Cr and Fe. The color of Emerald from Swat, Pakistan, is caused by Cr , and V contributes to color, and Cr/V is very high. According to LA-ICP-MS combined with the infrared spectrum, emerald from Swat , Pakistan belongs to alkali-rich emerald, and the fingerprint region of the infrared spectrum shows the same vibration absorption peak as common emerald. In the middle infrared region of 4 000~2 000 cm-1, low intensity 3 518 and 3 700 cm-1 belong to the asymmetric stretching vibration of type Ⅰwater and the other bands caused by water are saturated. The medium strong peak of 3 232 cm-1 is caused by polymer ion absorption of [Fe2(OH)4]2+. In the near infrared spectral region of 8 000~5 000 cm-1, the absorption band at 5 264 cm-1 belongs to the frequency combination absorption of ν3+ν2 of type Ⅰ/Ⅱ water in the direction perpendicular to the C-axis, and the peak of 7 097 cm-1 is caused by frequency double oscillation of type Ⅱ water. While weak ones of 7 187 and 6 842 cm-1 are caused by the frequency double oscillation of type Ⅰ water. In the parallel c-axis direction, the absorption band at 5 272 cm-1 belongs to the synthesis frequency absorption of ν3+ν2 of type Ⅰ/Ⅱ water, 7 073 cm-1 is the synthesis frequency vibration peak of type Ⅰ water, and the peak of 7 185 cm-1 belongs to the double frequency vibration of type Ⅱ water. In conclusion, the main chromaticity ions of emeralds in Swat Valley of Pakistan are Cr3+ and Fe3+, and the emeralds’ content of alkali metal ions is high and the emeralds from Swat Valley of Pakistan belong to type Ⅱ water-dominated emeralds.
参考文献

[1] Gubelin E J. Gems & Gemology, 1982, 18(3): 123.

[2] Kazmi A H, Lawrence R D, Anwar J, et al. Economic Geology, 1986, 81: 2022.

[3] Bowersox W Gary, Anwar Jawaid. Gems & Gemology, 1989, 25: 16.

[4] Giuliani Gaston, Groat A Lee, Marshall Dan, et al. Minerals, 2019, 9(2): 105.

[5] Guo H S, Yu X Y, Zheng Y Y, et al. Gems & Gemology, 2020, 56(3): 336.

[6] Zong K Q, Klemd R, Yuan Y, et al. Precambrian Research, 2017, 290: 32.

[7] Saeseaw S, Pardieu V, Sangsawong S. Gems & Gemology, 2014, 50(2): 114.

[8] Pardieu V, Sangsawong S, Cornuz L, et al. The Journal of Gemmology, 2020, 37(4): 416.

[9] Hu Y, Lu R. Gems & Gemology, 2019, 55(3): 338.

[10] Cui Di, Liao Zongting, Qi Lijian, et al. The Journal of Gemmology, 2020, 37(4): 374.

[11] Zwaan J C, Seifert A V, Vrana S, et al. Gem & Gemology, 2005, 41(2): 116.

[12] Bosshart G. The Journal of Gemmology, 1991, 22(7): 409.

[13] Erkoyun H, Kadir S. Earth Sciences Research Journal, 2016, 20(3): A1.

[14] QIAO Xin, ZHOU Zheng-yu, NONG Pei-zhen, et al(乔 鑫, 周征宇, 农佩瑧, 等). Rock and Mineral Analysis(岩矿测试), 2019, 38(2): 169.

[15] QI Li-jian, YE Song, XIANG Chang-jin, et al(亓利剑, 叶 松, 向长金, 等). Geological Science and Technology Information(地质科技情报), 2001, 20(3): 659.

[16] Mashkovtsev R I, Thomas V G, Fursenko D A, et al. American Mineralogist, 2016, 101(1): 175.

[17] Groat L A, Giuliani G, Marshall D D, et al. Ore Geology Reviews, 2008, 34: 87.

[18] Wood D L, Nassau K. The American Mineralogist, 1968, 53: 777.

鲍珮瑾, 陈全莉, 吴燕菡, 李璇, 赵安迪. 巴基斯坦斯瓦特山谷祖母绿的谱学特征研究[J]. 光谱学与光谱分析, 2023, 43(1): 213. BAO Pei-jin, CHEN Quan-li, WU Yan-han, LI Xuan, ZHAO An-di. Spectroscopy Characteristics of Emerald From Swat Valley, Pakistan[J]. Spectroscopy and Spectral Analysis, 2023, 43(1): 213.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!