硅酸盐学报, 2022, 50 (3): 769, 网络出版: 2022-11-11  

LiOH对Ta掺杂石榴石型Li7La3Zr2O12固体电解质的影响

Effect of LiOH on Tantalum Doped Li7La3Zr2O12 Garnet Solid Electrolyte
作者单位
华中科技大学材料科学与工程学院, 材料成形与模具技术国家重点实验室, 武汉 430074
摘要
通过固相法制备Ta掺杂Li7La3Zr2O12(Ta-LLZO)陶瓷, 以LiOH为锂源合成Ta-LLZO粉末, 并以LiOH为助烧剂制备Ta-LLZO陶瓷, 研究了LiOH对Ta-LLZO陶瓷的组织结构和离子电导率的影响。结果表明: 以LiOH为锂源可促进立方相Ta-LLZO的生成。同时, 以LiOH为助烧剂, 可有效促进陶瓷的致密化, 在1 200 ℃烧结5 h可获得致密的立方相Ta-LLZO陶瓷。当助烧剂的添加量为6%(质量分数)时, 陶瓷的离子电导率可达6.23×10-4 S·cm-1。可见, 固相法制备的Li7La3Zr2O12在全固态锂离子电池中具有广阔的应用前景。
Abstract
Tantalum (Ta) doped Li7La3Zr2O12 (Ta-LLZO) ceramics were prepared via conventional solid-state reaction. LiOH was used as a lithium source and a sintering additive for ceramics. The effect of LiOH on the microstructure and ionic conductivity of Ta-LLZO ceramics was investigated. The results show that LiOH as a lithium source can promote the formation of cubic Ta-LLZO, and LiOH as a sintering additive can effectively improve the densification of ceramics. The dense cubic garnet Ta-LLZO ceramics were obtained by sintering at 1 200 ℃ for 5 h. When the amount of the sintering additive is 6% (in mass fraction), the ionic conductivity of ceramics reaches 6.23×10-4 S·cm-1. It is indicated that Li7La3Zr2O12 prepared via solid-state reaction has a great potential in the application of all-solid-state lithium ion batteries.
参考文献

[1] MURUGAN R, THANGADURAI V, WEPPNER W, Fast lithium ion conduction in garnet-type Li7La3Zr2O12[J]. Angew Chem Int Ed, 2007, 46(41): 7778-7781.

[2] MA C, CHENG Y Q, YIN K B, et al. Interfacial stability of Li metal solid electrolyte elucidated via in situ electron microscopy[J]. Nano Lett, 2016, 16(11): 7030-7036.

[3] 陈龙, 池上森, 董源, 等. 全固态锂电池关键材料—固态电解质研究进展[J]. 硅酸盐学报, 2018, 46(1): 21-34.

[4] AWAKA J, KIJIMA N, HAYAKAWA H, et al. Synthesis and structure analysis of tetragonal Li7La3Zr2O12 with the garnet-related type structure[J]. J Solid State Chem, 2009, 182(8): 2046-2052.

[5] GEIGER C A, ALEKSEEV E, LAZIC B, et al. Crystal chemistry and stability of “Li7La3Zr2O12” garnet: a fast lithium-ion conductor[J]. Inorg Chem, 2011, 50(3): 1089-1097.

[6] RANGASAMY E, WOLFENSTINE J, SAKAMOTO J, The role of Al and Li concentration on the formation of cubic garnet solid electrolyte of nominal composition Li7La3Zr2O12[J]. Solid State Ionics, 2012, 206: 28-32.

[7] WOLFENSTINE J, RATCHFORD J, RANGASAMY E, et al. Syn thesis and high Li-ion conductivity of Ga-stabilized cubic Li7La3Zr2O12 [J]. Mater Chem Phys, 2012, 134 (2-3): 571?傆b575.

[8] WAGNER R, REDHAMMER G J, RETTENWANDER D, et al. Fast Li-ion-conducting garnet-related Li7-3xFexLa3Zr2O12 with uncommon I43d structure[J]. Chem Mater, 2016, 28(16): 5943-5951.

[9] HUANG M, SHOJI M, SHEN Y, et al. Preparation and electrochemical properties of Zr-site substituted Li7La3(Zr2-xMx)O12 (M=Ta, Nb) solid electrolytes[J]. J Power Sources, 2014, 261: 206-211.

[10] IMAGAWA H, OHTA S, KIHIRA Y, et al. Garnet-type Li6.75La3Zr1.75Nb0.25O12 synthesized by coprecipitation method and its lithium ion conductivity[J]. Solid State Ionics, 2014, 262: 609-612.

[11] PERCIVAL J, APPERLEY D, SLATER P R, Synthesis and structural characterisation of the Li ion conducting garnet-related systems, Li6ALa2Nb2O12 (A=Ca, Sr)[J]. Solid State Ionics, 2008, 179: 1693-1696.

[12] DUMON A, HUANG M, SHEN Y, et al. High Li ion conductivity in strontium doped Li7La3Zr2O12 garnet[J]. Solid State Ionics, 2013, 243: 36-41.

[13] ALLEN J L, WOLFENSTINE J, RANGASAMY E, et al. Effect of substitution (Ta, Al, Ga) on the conductivity of Li7La3Zr2O12[J]. J Power Sources, 2012, 206: 315-319.

[14] KIM Y, YOO A, SCHMIDT R, et al. Electrochemical stability of Li6.5La3Zr1.5M0.5O12 (M=Nb or Ta) against metallic lithium[J]. Front Energy Res, 2016, 4: 20.

[15] HUANG X, SU J M, SONG Z, et al. Synthesis of Ga-doped Li7La3Zr2O12 solid electrolyte with high Li+ ion conductivity[J]. Ceram Int, 2021, 47(2): 2123?傆b2130.

[16] ZHANG S S, ZHAO H L, WANG J, et al. Enhanced densification and ionic conductivity of Li-garnet electrolyte: Efficient Li2CO3 elimination and fast grain-boundary transport construction[J]. Chem Eng J, 2020, 393: 124797.

[17] HUANG M, LIU T, DENG Y F, et al. Effect of sintering temperature on structure and ionic conductivity of Li7-xLa3Zr2O12-0.5x (x=0.5-0.7) ceramics[J]. Solid State Ionics, 2011, 204: 41-45.

[18] YI M Y, LIU T, WANG X N, et al. High densification and Li-ion conductivity of Al-free Li7-xLa3Zr2-xTaxO12 garnet solid electrolyte prepared by using ultrafine powders[J]. Ceram Int, 2019, 45(1): 786-792.

[19] MISHRA M, HSU C W, RATH P C, et al. Ga-doped lithium lanthanum zirconium oxide electrolyte for solid-state Li batteries[J]. Electrochim Acta, 2020, 353: 136536.

[20] HUANG X, LU Y, SONG Z, et al. Preparation of dense Ta-LLZO/MgO composite Li-ion solid electrolyte: Sintering, microstructure, performance and the role of MgO[J]. J Energy Chem, 2019, 39: 8-16.

[21] 黄冕, 杜蒙?偸亚历山大, 沈洋, 等. 锂含量与烧结时间对固体电解质Li7La3Zr2O12电导率的影响[J]. 硅酸盐学报, 2013, 41(8): 1042-1045.

[22] KOTOBUKI M, KANAMURA K, SATO Y, et al. Fabrication of all-solid-state lithium battery with lithium metal anode using Al2O3-added Li7La3Zr2O12 solid electrolyte[J]. J Power Sources, 2011, 196 (SI 18): 7750-7754.

[23] SHIN R H, SON S I, HAN Y S, et al. Sintering behavior of gar net- type Li7La3Zr2O12-Li3BO3 composite solid electrolytes for all-solid- state lithium batteries[J]. Solid State Ionics, 2017, 301: 10-14.

[24] THOMPSON T, WOLFENSTINE J, ALLEN J L, et al. Tetragonal vs. cubic phase stability in Al-free Ta doped Li7La3Zr2O12 (LLZO)[J]. J Mater Chem A, 2014, 2(33): 13431-13436.

宋健, 张航, 薛丽红, 张五星, 严有为. LiOH对Ta掺杂石榴石型Li7La3Zr2O12固体电解质的影响[J]. 硅酸盐学报, 2022, 50(3): 769. SONG Jian, ZHANG Hang, XUE Lihong, ZHANG Wuxing, YAN Youwei. Effect of LiOH on Tantalum Doped Li7La3Zr2O12 Garnet Solid Electrolyte[J]. Journal of the Chinese Ceramic Society, 2022, 50(3): 769.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!