作者单位
摘要
天津工业大学 纺织科学与工程学院 天津 300387
通过固相反应法制备出室温下高离子电导率Ta掺杂的锂镧锆钽氧(Li6.5La3Zr1.5Ta0.5O12,LLZTO)固体电解质,详细研究了电子束辐照对LLZTO固体电解质结构和性能的影响。结果表明:电子束(250 kGy、500 kGy)辐照后并未产生其他杂相,且晶格间距随着剂量的增加逐渐变大,这有利于降低离子在晶格中的扩散能垒。第一性原理的计算发现,低剂量电子束辐照样的Li+扩散能垒比未辐照样降低了0.07 eV,说明辐照产生的缺陷能促进Li+扩散。辐照前后的电解质交流阻抗测试进一步证实了低剂量的电子束辐照有利于提升电解质的离子电导率。利用电子束辐照探究其对LLZTO氧化物固体电解质结构和电导率的影响对固体电解质的研究具有重要意义。
电子束辐照 固体电解质 氧化物 第一性原理 离子传输 Electron beam irradiation Solid electrolyte Oxide First principles Ion transport 
辐射研究与辐射工艺学报
2024, 42(1): 010206
作者单位
摘要
浙江工业大学材料科学与工程学院,杭州 310014
金属锂被认为是高能量密度电池材料的“圣杯”,具有超高的理论容量和最低的氧化还原电位。但由于锂枝晶不可控生长、固体电解质界面膜(SEI膜)不稳定以及“死锂”累积等系列问题,限制了其商业化应用。氟化材料能有效稳定金属锂/电解液界面,均匀锂离子通量和抑制锂枝晶生长,是金属锂二次电池领域的研究重点。本文综述了近年来氟化无机材料在金属锂沉积骨架、人工SEI保护层、电解液添加剂以及固态电解质等方面的研究进展,阐述了氟化无机材料稳定金属锂负极循环的内在机理,并展望了其未来的发展前景。
金属锂负极 锂枝晶 固体电解质界面膜 氟化 锂离子电池 lithium metal anode lithium dendrites solid-electrolyte interface fluorination lithium-ion battery 
硅酸盐学报
2023, 51(9): 2322
作者单位
摘要
青岛大学 物理科学学院, 青岛 266071
硅(Si)负极在充放电过程中巨大的体积变化会导致固态电解质中间相(SEI)破裂和硅颗粒粉化, 进而造成容量快速衰减。本研究报道了一种利用Li6.4La3Zr1.4Ta0.6O12(LLZTO)固体电解质调节Si/C负极表面SEI成分的策略。将LLZTO层均匀地涂覆在商用化聚丙烯(PP)隔膜表面, 不仅提高了电解液对隔膜的润湿性, 均匀化锂离子通量, 并且增大了SEI中无机组分的比例, 从而增强Si/C负极的界面稳定性。得益于上述优势, 使用LLZTO修饰的PP隔膜所组装的锂离子电池表现出更为优异的循环稳定性和倍率性能。Li-Si/C半电池的可逆容量为876 mAh·g-1, 在0.3C (1C=1.5 A·g-1)的倍率下, 200次循环的容量保持率为81%; 而LFP-Si/C全电池的比容量为125 mAh·g-1, 在0.3C (1C=170 mA·g-1)的倍率下循环100次后容量保持率为91.8%。该工作中LLZTO固体电解质调节了Si/C负极表面SEI成分, 为开发高性能硅基锂离子电池提供了新思路。
固体电解质中间相 成分调控 石榴石型固体电解质 Si/C负极 锂离子电池 solid electrolyte interphase composition regulation garnet-type solid electrolyte Si/C anode lithium- ion battery 
无机材料学报
2022, 37(7): 802
作者单位
摘要
1 中国科学院宁波材料技术与工程研究所,浙江 宁波 315201
2 中国科学院大学,北京 100049
采用高温淬火法成功制备了Na11Sn2PS12固体电解质,并对其结构、离子/电子电导率、激活能以及电化学稳定性进行了表征分析,最后研究了Na11Sn2PS12固体电解质在全固态钠电池中的应用。结果表明:高温淬火得到的目标物相含有杂相,通过430 ℃退火可以显著减少杂相,进而将钠离子电导率从0.34×10-4 S/cm提高至6.26×10-4 S/cm;退火后的Na11Sn2PS12固体电解质具有较低的激活能(0.27 eV)和电子电导率(2.25×10-8 S/cm),且在0.8~2.8 V具有稳定的电化学窗口。将Na11Sn2PS12应用于全固态钠电池,电池表现出良好的充放电性能。
硫化物固体电解质 四元钠离子导体 高温淬火法 全固态钠电池 sulfide solid electrolytes, quaternary sodium ioni 
硅酸盐学报
2022, 50(1): 55
作者单位
摘要
华中科技大学材料科学与工程学院, 材料成形与模具技术国家重点实验室, 武汉 430074
通过固相法制备Ta掺杂Li7La3Zr2O12(Ta-LLZO)陶瓷, 以LiOH为锂源合成Ta-LLZO粉末, 并以LiOH为助烧剂制备Ta-LLZO陶瓷, 研究了LiOH对Ta-LLZO陶瓷的组织结构和离子电导率的影响。结果表明: 以LiOH为锂源可促进立方相Ta-LLZO的生成。同时, 以LiOH为助烧剂, 可有效促进陶瓷的致密化, 在1 200 ℃烧结5 h可获得致密的立方相Ta-LLZO陶瓷。当助烧剂的添加量为6%(质量分数)时, 陶瓷的离子电导率可达6.23×10-4 S·cm-1。可见, 固相法制备的Li7La3Zr2O12在全固态锂离子电池中具有广阔的应用前景。
固体电解质 石榴石型 锂镧锆氧 固相反应 锂离子电导率 solid state electrolyte garnet-type lithium lanthanum zirconium oxides solid state reaction lithium ion conduction 
硅酸盐学报
2022, 50(3): 769
作者单位
摘要
徐州工程学院材料与化学工程学院,徐州 221018
传统锂离子电池采用有机电解液体系,能量密度难以进一步提升,同时存在一定的安全隐患。采用无机固体电解质构建全固态锂电池,在提高电池能量密度同时可兼顾安全性问题。在众多无机固体电解质中,Li7La3Zr2O12(LLZO)石榴石电解质具有离子电导率高、与金属锂接触稳定等优势,成为受人关注的材料。为了进一步提高该材料的导电性,采用固相法合成Ta、Ba共掺杂LLZO(Li7-x+yLa3-yBayZr2-xTaxO12)电解质,采用X射线衍射、扫描电子显微镜和电化学阻抗法分析样品的物相结构、微观形貌及离子电导率。结果表明,Ta5+掺杂能够稳定立方相结构,Ba2+作为掺杂剂和烧结剂,促进晶粒生长和陶瓷致密化,从而降低总电阻。其中,Li6.45La2.95Ba0.05Zr1.4Ta0.6O12样品在室温下的总电导率为1.07×10-3 S·cm-1,活化能为0.378 eV。Ta5+/Ba2+共掺杂有利于制备高致密度和高电导率的石榴石型电解质材料。
固体电解质 石榴石 掺杂 致密度 电导率 solid-state electrolyte garnet Li7La3Zr2O12 Li7La3Zr2O12 doping density conductivity 
硅酸盐通报
2022, 41(9): 3279
作者单位
摘要
1 长沙理工大学材料科学与工程学院, 长沙 410014
2 清华大学新型陶瓷与精细工艺国家重点实验室, 北京 100084
固体氧化物电池(SOCs)作为一种绿色、高效的全固态能量转换装置, 既能在燃料电池模式下将氢、碳、烃、醇等燃料的化学能转化为电能, 又能在电解池模式下分解水制氢, 在缓解全球能源危机、实现碳中和等方面具有重要意义。然而, SOCs常用的Y2O3稳定的ZrO2(YSZ)电解质材料在1 000 ℃以上才具有较高的离子电导率, 但过高的工作温度会提高运行成本, 限制材料选择, 并降低系统稳定性。因此, 降低工作温度一直是SOCs发展的核心问题之一, 开发高电导率电解质材料和降低电解质膜厚度是实现SOCs中低温化应用的主要路径。本文从材料开发和薄膜制造两方面对中低温SOCs各类氧离子电解质的研究进展进行梳理, 针对ZrO2、CeO2、Bi2O3及LaGaO3基固体电解质, 系统阐述了异价离子掺杂对提升氧离子电导率和稳定相结构的作用机制, 介绍了电解质薄膜的制备技术和导电性能, 为发展高性能固体氧化物电池电解质材料提供参考依据。
固体氧化物电池 固体电解质 薄膜 氧离子电导率 掺杂 solid oxide cells solid electrolyte thin film oxygen ion conductivity doping 
硅酸盐通报
2022, 41(7): 2447
作者单位
摘要
青岛大学 物理科学学院, 青岛 266071
目前钠离子电池采用的有机电解液存在易燃易爆等安全隐患, 迫切需要开发高性能的固体电解质材料。其中NASICON型Na3Zr2Si2PO12电解质具有宽电化学窗口、高机械强度、对空气稳定、高离子电导率等优点, 应用前景广阔。但已有研究的陶瓷生坯由于黏结剂包覆不均匀导致生坯内部气孔较多, 难以烧成高致密、高离子电导的陶瓷电解质。本研究采用喷雾干燥法, 在Na3Zr2Si2PO12颗粒表面均匀包覆黏结剂的同时对颗粒进行球形造粒, 实现颗粒接近正态分布的粒度级配, 从而有效提高了颗粒间接触、降低了陶瓷坯体的孔隙率。制备的Na3Zr2Si2PO12陶瓷电解质的致密度达到97.5%, 室温离子电导率达到6.96×10-4S∙cm-1, 远高于常规方法的致密度(88.1%)和离子电导率(4.94×10-4S∙cm-1)。
固体电解质 喷雾干燥法 致密度 离子电导率 Na3Zr2Si2PO12 solid electrolyte spray-drying method density ionic conductivity Na3Zr2Si2PO12 
无机材料学报
2021, 37(2): 189
作者单位
摘要
1 1.中国人民解放军61699部队, 枝江 443200
2 2.国防科技大学 空天科学学院, 长沙 410073

高荷电存储寿命对锂离子电池的使用性能具有重要影响, 但是相关研究却较为缺乏。本研究通过高温加速实验, 研究了LiNi0.8Co0.15Al0.05O2(NCA)/石墨锂离子电池在55 ℃下的存储寿命, 分析了正负极材料在电池寿命终点时的电化学性能和界面变化。研究结果表明, 在55 ℃、高荷电状态下NCA/石墨锂离子电池的存储寿命约为90 d。在寿命终点时, 正负极活性材料的容量有一定下降, 但不是电池容量衰减的主要原因。界面分析表明, 存储后负极表面固体电解质界面(SEI)膜增长明显, 而正极表面固体电解质界面(PEI)膜无明显变化。SEI膜的增长主要是由于电解液溶剂和锂反应, 造成石墨内锂损失, 使电池内可循环锂减少, 这是NCA/石墨电池在存储过程中容量损失的主要原因。

锂离子电池 NCA/石墨 存储老化 容量损失 固体电解质界面膜 Li ion battery NCA/graphite storage aging capacity fading solid electrolyte interface (SEI) 
无机材料学报
2021, 36(2): 175
作者单位
摘要
华南理工大学 环境与能源学院, 新能源研究所, 广州市能源材料表面化学重点实验室, 广州 510006
本研究采用高温固相反应法合成了BaCe0.7Zr0.1Y0.2O3-d (BCZY7)质子导体氧化物, 对材料的物相结构和微观形貌进行表征和分析, 并将BCZY7作为固体氧化物燃料电池(SOFC)的电解质, 通过浸渍法和共烧结法成功制备了阳极支撑的NiO-BCZY7/BCZY7/La0.6Sr0.4Co0.2Fe0.8O3-δ(LSCF)-BCZY7钮扣式电池。以氢气(含3vol% H2O)为燃料, 空气为氧化剂, 对电池的电化学性能进行测试。结果表明, 在600、550、500 ℃时, 电池的最高功率密度分别为203, 123, 92 mW×cm-2, 而传统(ZrO2)0.92(Y2O3)0.08基SOFC在600 ℃时通常只有几十毫瓦的单位面积输出, 质子导体电解质可以极大改善SOFC的中低温性能, 缓解SOFC工作温度高的问题。
质子导体 固体氧化物燃料电池 中低温固体电解质 活化能 proton conductor solid oxide fuel cell reduced temperature electrolyte activation energy 
无机材料学报
2020, 35(9): 1047

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!