作者单位
摘要
新型电池物理与技术教育部重点实验室,吉林大学物理学院,长春 130012
在新一代储能领域中,相比于传统的有机液态电池,全固态电池具有安全性高、能量密度高和循环寿命长等优势,对其电解质的研究更是关注的重点。有机-无机复合固态电解质结合了无机固态电解质高强度、高稳定性、高离子电导率与聚合物固态电解质的质软、易加工的优势,是目前最有潜力的电解质体系。对锂离子固态电解质的基础进行了简介,并着重对有机-无机复合电解质存在的问题(离子电导率、固固界面、电化学窗口及两相相容性)及优化策略进行总结,最后对复合电解质面临的关键挑战和未来发展趋势进行了展望。
锂离子电池 固态电解质 有机-无机复合固态电解质 离子电导率 固固界面 lithium ion battery solid-state electrolyte organic-inorganic composite solid electrolyte ionic conductivity solid-solid interface 
硅酸盐学报
2022, 50(1): 121
胡江奎 1,2,*袁洪 1,2赵辰孜 3卢洋 3[ ... ]黄佳琦 1,2
作者单位
摘要
1 北京理工大学材料学院,北京 100081
2 北京理工大学前沿交叉科学研究院,北京 100081
3 清华大学化学工程系,北京 100084
采用固态电解质的固态锂电池有望从根本上提高电池的安全性能及能量密度,被认为是最具应用前景的下一代电池技术之一。在诸多固态电解质中,硫化物固态电解质由于超高的离子电导率被认为最具实用化前景,但固态电解质膜易碎、难以加工等问题严重阻碍了其在固态电池中的应用。近年来,大量研究成果表明在固态电解质中引入柔性聚合物或柔性支撑载体等可以实现固态电解质膜的柔性化,从而可以解决固态电解质在规模化、薄膜化制备过程中脆裂问题。因此,固态电解质柔性化是推动固态电池工业化的重要解决方案之一。首先介绍了硫化物固态电解质的理化性质及发展历程,随后,总结了聚合物自支撑方法与柔性骨架支撑策略在固态电解质柔性化方面的研究进展,并分别讨论了湿法和干法工艺在硫化物固态电解质柔性化方面的技术特点和优劣,最后对未来发展趋势进行了展望,旨在进一步推动固态锂电池迈向实用化。
硫化物电解质 固态电解质 柔性 固态锂电池 sulfide electrolytes solid-state electrolyte flexibility solid-state lithium batteries 
硅酸盐学报
2022, 50(1): 110
作者单位
摘要
华中科技大学材料科学与工程学院, 材料成形与模具技术国家重点实验室, 武汉 430074
通过固相法制备Ta掺杂Li7La3Zr2O12(Ta-LLZO)陶瓷, 以LiOH为锂源合成Ta-LLZO粉末, 并以LiOH为助烧剂制备Ta-LLZO陶瓷, 研究了LiOH对Ta-LLZO陶瓷的组织结构和离子电导率的影响。结果表明: 以LiOH为锂源可促进立方相Ta-LLZO的生成。同时, 以LiOH为助烧剂, 可有效促进陶瓷的致密化, 在1 200 ℃烧结5 h可获得致密的立方相Ta-LLZO陶瓷。当助烧剂的添加量为6%(质量分数)时, 陶瓷的离子电导率可达6.23×10-4 S·cm-1。可见, 固相法制备的Li7La3Zr2O12在全固态锂离子电池中具有广阔的应用前景。
固体电解质 石榴石型 锂镧锆氧 固相反应 锂离子电导率 solid state electrolyte garnet-type lithium lanthanum zirconium oxides solid state reaction lithium ion conduction 
硅酸盐学报
2022, 50(3): 769
作者单位
摘要
徐州工程学院材料与化学工程学院,徐州 221018
传统锂离子电池采用有机电解液体系,能量密度难以进一步提升,同时存在一定的安全隐患。采用无机固体电解质构建全固态锂电池,在提高电池能量密度同时可兼顾安全性问题。在众多无机固体电解质中,Li7La3Zr2O12(LLZO)石榴石电解质具有离子电导率高、与金属锂接触稳定等优势,成为受人关注的材料。为了进一步提高该材料的导电性,采用固相法合成Ta、Ba共掺杂LLZO(Li7-x+yLa3-yBayZr2-xTaxO12)电解质,采用X射线衍射、扫描电子显微镜和电化学阻抗法分析样品的物相结构、微观形貌及离子电导率。结果表明,Ta5+掺杂能够稳定立方相结构,Ba2+作为掺杂剂和烧结剂,促进晶粒生长和陶瓷致密化,从而降低总电阻。其中,Li6.45La2.95Ba0.05Zr1.4Ta0.6O12样品在室温下的总电导率为1.07×10-3 S·cm-1,活化能为0.378 eV。Ta5+/Ba2+共掺杂有利于制备高致密度和高电导率的石榴石型电解质材料。
固体电解质 石榴石 掺杂 致密度 电导率 solid-state electrolyte garnet Li7La3Zr2O12 Li7La3Zr2O12 doping density conductivity 
硅酸盐通报
2022, 41(9): 3279
作者单位
摘要
成都理工大学材料与化学化工学院, 成都 610059
固态电解质是高安全性、高能量密度的全固态锂电池的核心部件, 其典型代表Li7La3Zr2O12(LLZO)具有高离子电导率、高机械强度、高电化学稳定性、低界面阻抗以及对锂金属负极良好的稳定性等优势, 是科研人员重点关注的对象之一, 但与液态电解质相比, 目前LLZO仍存在低离子电导率和与电极固-固界面接触等问题。本文主要简介了LLZO的晶体结构、改性方式等对其离子电导率及界面阻抗的影响, 同时对LLZO现存的问题进行了总结, 对LLZO的未来发展方向进行了展望, 为探索全固态锂电池的实际生产应用提供理论指导。
固态电解质 全固态锂电池 晶体结构 离子电导率 界面阻抗 solid-state electrolyte Li7La3Zr2O12 Li7La3Zr2O12 all-solid-state lithium battery crystal structure ionic conductivity interface impedance 
硅酸盐通报
2022, 41(8): 2871
李栋 1,2雷超 1,2赖华 3刘小林 1,2[ ... ]钟盛文 1,2
作者单位
摘要
1 材料科学与工程学院 江西理工大学
2 江西省动力电池及材料重点实验室
3 资源环境与工程学院, 赣州341000
全固态锂离子电池具有高安全性、高能量密度、宽使用温度范围以及长使用寿命等优势, 在动力电池汽车和大规模储能电网领域具有广阔的应用前景。作为全固态电池的重要组成部分, 无机固体电解质尤其是石榴石型固态电解质在室温下锂离子电导率可达10 -3 S·cm -1, 且对金属锂相对稳定, 在全固态电池的应用中具有明显的优势。然而正极与石榴石型固体电解质间接触性能以及界面的稳定性差, 使得电池表现出高的界面阻抗、低的库伦效率和差的循环性能。本文以全固态锂离子电池正极与石榴石型固体电解质界面为研究对象, 分析了正极/固体电解质的界面特性以及界面研究中存在的问题, 综述了正极复合、界面处理工艺、界面层引入等界面调控和改性的方法, 阐述了优化正极与石榴石型固体电解质界面结构, 改善界面润湿性的解决思路, 提出了未来全固态锂离子电池发展中有待进一步改进的关键问题, 为探索全固态锂离子电池的实际应用提供了借鉴。
无机固体电解质 复合电解质 界面润湿性 界面阻抗 界面改性 综述 inorganic solid state electrolyte composite electrolyte interfacial wettability interfacial impendence interface modification review 
无机材料学报
2019, 34(7): 694
作者单位
摘要
1 华南理工大学 材料科学与工程学院 发光材料与器件国家重点实验室 高分子光电材料与器件研究所, 广州 510640
2 华南农业大学 电子工程学院, 广州 510642
讨论了基本的EC器件结构设计、被广泛应用的阴极氧化物材料(WO3)的结构以及改善其性能的一些方法和新型固体电解质材料。最后, 对EC器件的未来发展做了展望。
溶液法 电致变色器件 三氧化钨 纳米结构 固体电解质 solution process electrochromic device Tungsten oxide nanostructure solid-state electrolyte 
光电子技术
2018, 38(1): 49

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!