人工晶体学报, 2023, 52 (2): 298, 网络出版: 2023-03-18  

Ru掺杂MoS2对SO2F2和H2S气体吸附的第一性原理研究

First-Principles Study of Adsorption of SO2F2 and H2S on the Ru Doped MoS2
作者单位
1 海南电网有限责任公司电力科学研究院,海口 570311
2 海南省电网理化分析重点实验室,海口 570311
3 华北电力大学,保定 071003
摘要
本文基于第一性原理探讨了Ru掺杂的单层MoS2 (Ru-MoS2)的结构及其对SF6绝缘设备中的两种主要分解气体SO2F2和H2S的传感和吸附行为。Ru原子进入硫空位从而产生Ru-MoS2,结果表明,Ru-MoS2对SO2F2和H2S气体的吸附能(Ead)分别为-1.52和-2.11 eV,属于化学吸附。通过能带分析(BS)和态密度(DOS)分析进一步证明了两个体系的吸附性能,并阐述了Ru-MoS2用于电阻式气体传感器时的气体吸附传感机制。除此之外,本文在理论上探索了不同温度下Ru-MoS2解吸附SO2F2和H2S的恢复时间,在598 K温度下,SO2F2吸附体系的恢复时间为6.40 s,展示出该新型材料在高温下对气体的可恢复性。本文研究内容为Ru-MoS2检测SF6绝缘设备中的两种主要分解气体SO2F2和H2S提供理论基础,从而促进电力系统的稳定运行。
Abstract
The sensing and adsorption behaviors of Ru-doped MoS2 monolayer (Ru-MoS2) on the two main decomposition gases SO2F2 and H2S in SF6 insulated equipment were investigated based on the first-principles. Ru atoms were doped in sulfur vacancies to create Ru-MoS2 monolayer. The results show that the adsorption energy (Ead) of the SO2F2 and H2S adsorption systems are -1.52 eV and -2.11 eV, respectively, indicating that both systems are classified as chemisorption. Band structure(BS) and density of states(DOS) analyses further demonstrate the adsorption properties of both systems, and the gas adsorption sensing mechanism of single-layer Ru-MoS2 used in resistance gas sensor is described. In addition, the recovery time of Ru-MoS2 monolayer for the desorption of SO2F2 and H2S was explored theoretically at different temperatures, and the recovery time of SO2F2 adsorption system is 6.40 s at 598 K, demonstrating the recoverability of this novel material for gases at high temperatures. This study provides a theoretical basis for Ru-MoS2 to detect the two main decomposition gases SO2F2 and H2S in SF6 insulation equipment, which is essential to promote the stable operation of power systems.
参考文献

[1] 张 鹏, 齐 波, 李成榕, 等. 电力变压器油中溶解气体特性影响因素的量化分析[J]. 中国电机工程学报, 2021, 41(10): 3620-3631+3686.

[2] 李 科. 基于密度泛函理论计算的气敏研究方法及其具体应用[D]. 合肥: 中国科学技术大学, 2020.

[3] 谢伟伦, 黄志威, 刘小沛. 杂散电容对CVT谐波测量影响的处理方法研究[J]. 电力电容器与无功补偿, 2020, 41(2): 59-63.

[4] 王振河, 陈 天, 咸日常, 等. 电力电容器常见故障分析及预防措施[J]. 电力电容器与无功补偿, 2020, 41(2): 42-46.

[5] 张照辉, 徐江涛, 刘子全, 等. 一起特高压换流站交流滤波电容器故障分析与思考[J]. 电力电容器与无功补偿, 2020, 41(2): 47-52.

[6] 吕顺利, 丁 杰, 张海滨, 等. 新型电力系统智慧物联感知技术标准体系研究及思考[J]. 电力信息与通信技术, 2021, 19(8): 39-46.

[7] 王婧璇, 周 渠, 桂银刚, 等. 掺杂硫化钼对油中特征气体C2H2的吸附性能[J]. 高电压技术, 2020, 46(6): 1962-1969.

[8] 卢士达, 金玲丽, 姚亦凡. 智慧电力网络安全态势感知能力建设与提升: 数据驱动从传统运维转型智慧运维[J]. 信息安全与通信保密, 2021(8): 60-67.

[9] CUI H, ZHU H L, JIA P F. Adsorption and sensing of SO2 and SOF2 molecule by Pt-doped HfSe2 monolayer: a first-principles study[J]. Applied Surface Science, 2020, 530: 147242.

[10] 董旭柱, 张 琛, 阮江军, 等. 油浸式电力变压器动态载荷评估技术研究与应用[J]. 高电压技术, 2021, 47(6): 1959-1968.

[11] 刘慧鑫, 连鸿松, 张江龙, 等. 变压器油中溶解气体在线监测装置运行质量指标及评价体系[J]. 高压电器, 2021, 57(1): 143-149.

[12] ZHAO B, LI C Y, LIU L L, et al. Adsorption of gas molecules on Cu impurities embedded monolayer MoS2: a first-principles study[J]. Applied Surface Science, 2016, 382: 280-287.

[13] YUSFI M, JONUARTI R, WUNGU T, et al. The adsorption of C2H2, C2H4, and C2H6 on single Fe atom doped SWCNT: a density functional theory study[J]. International Journal of Nanoelectronics and Materials, 2020, 13(1): 113-120.

[14] FAN Y H, ZHANG J Y, QIU Y Z, et al. A DFT study of transition metal (Fe, Co, Ni, Cu, Ag, Au, Rh, Pd, Pt and Ir)-embedded monolayer MoS2 for gas adsorption[J]. Computational Materials Science, 2017, 138: 255-266.

[15] CAO W H, GUI Y G, CHEN T, et al. Adsorption and gas-sensing properties of Pt2-GaNNTs for SF6 decomposition products[J]. Applied Surface Science, 2020, 524: 146570.

[16] HE X, GUI Y G, XIE J F, et al. A DFT study of dissolved gas (C2H2, H2, CH4) detection in oil on CuO-modified BNNT[J]. Applied Surface Science, 2020, 500: 144030.

[17] 陈 彬, 刘 阁. 变压器油中微水含量在线监测方法研究进展[J]. 高电压技术, 2020, 46(4): 1405-1416.

[18] 陈积光, 周 蜜. 基于泛在电力物联网的智慧供应链研究[J]. 控制工程, 2020, 27(6): 1098-1102.

[19] REDDY C V, NEELAKANTA REDDY I, RAVINDRANADH K, et al. Ni-dopant concentration effect of ZrO2 photocatalyst on photoelectrochemical water splitting and efficient removal of toxic organic pollutants[J]. Separation and Purification Technology, 2020, 252: 117352.

[20] 冯海宁, 刘彦辉, 陈升武, 等. 电力系统保护与继电器技术应用发展研究[J]. 山西电子技术, 2021(5): 74-76.

[21] 宋 庆. 智能电网环境下电力系统保护新技术的研究与探讨[J]. 电力设备管理, 2021(7): 28-29.

[22] 刘羽峰. 智能电网环境下电力系统保护新技术的研究与探讨[J]. 电气传动自动化, 2020, 42(3): 41-43+53.

[23] 戎子睿, 金 能, 林湘宁, 等. 基于Hausdorff距离的自适应母线保护新原理[J]. 电网技术, 2021, 45(1): 312-321.

[24] QI B, ZHANG P, RONG Z H, et al. Differentiated warning rule of power transformer health status based on big data mining[J]. International Journal of Electrical Power & Energy Systems, 2020, 121: 106150.

[25] 刘 骥, 吕佳璐, 张明泽, 等. 换油条件下变压器油纸绝缘老化寿命评估研究[J]. 高电压技术, 2020, 46(5): 1750-1758.

[26] 王健一, 周远翔, 程涣超, 等. 加氢异构非环烷基变压器油的最新进展与展望[J]. 中国电机工程学报, 2020, 40(16): 5373-5383.

[27] 马 帅. 电力系统继电保护动作的故障分析[J]. 中国设备工程, 2022(4): 128-129.

[28] 王邸博, 陈达畅, 皮守苗, 等. 基于密度泛函理论的SF6分解组分在ZnO(0001)吸附及传感性能研究[J]. 电工技术学报, 2020, 35(7):1592-1602.

[29] 苏建民. 电力系统继电保护隐性故障分析[J]. 大众标准化, 2022(3): 30-32.

[30] LI D J, RAO X J, ZHANG L, et al. First-principle insight into the Ru-doped PtSe2 monolayer for detection of H2 and C2H2 in transformer oil[J]. ACS Omega, 2020, 5(49): 31872-31879.

张瑞恩, 陈林聪, 李欣然, 赵海龙, 符小桃, 范晓舟, 雷添翔. Ru掺杂MoS2对SO2F2和H2S气体吸附的第一性原理研究[J]. 人工晶体学报, 2023, 52(2): 298. ZHANG Ruien, CHEN Lincong, LI Xinran, ZHAO Hailong, FU Xiaotao, FAN Xiaozhou, LEI Tianxiang. First-Principles Study of Adsorption of SO2F2 and H2S on the Ru Doped MoS2[J]. Journal of Synthetic Crystals, 2023, 52(2): 298.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!