硅酸盐通报, 2023, 42 (8): 3005, 网络出版: 2023-11-01  

基于纳米氧化锌-石墨复合材料的电化学传感器检测对苯二酚

Electrochemical Sensor Based on Nano-ZnO-C Composite Materials for Determination of Hydroquinone
作者单位
1 开封大学材料与化学工程学院,开封 475000
2 华北水利水电大学材料学院,郑州 450001
3 郑州大学材料科学与工程学院,郑州 450001
4 南京工程学院材料科学与工程学院,南京 210000
5 佛光发电设备股份有限公司,郑州 450001
摘要
对苯二酚(HQ)作为一种稳定剂和抗氧剂主要应用于工业领域,工业废水中对苯二酚的残留对人体及环境危害严重,因此,建立一种简单、准确检测对苯二酚的方法对食品安全和环境监测具有重要意义。本文构建了纳米氧化锌-高纯石墨/玻碳(ZnO-C/GC)复合材料电化学传感器,实验材料简单易得,成本低。利用原子力显微镜(AFM)、场发射扫描电子显微镜(SEM)、X射线衍射(XRD)和电化学交流阻抗法(EIS)分析了纳米ZnO-C复合材料的结构特征、表面特征和导电性,采用循环伏安法(CV)实现了纳米ZnO-C/GC复合材料电化学传感器对对苯二酚的检测,探究了对苯二酚的电催化机理,该电化学传感器检测对苯二酚具有良好的稳定性和准确性,较宽的线性范围,检出限达到1.0×10-8 mol/L。
Abstract
Hydroquinone(HQ) was mainly used in the industrial field as a stabilizing agent and antioxygen. The residue of hydroquinone in industrial wastewater was seriously harmful to human body and environment. Therefore, it is of great significance to establish a simple and accurate method for the detection of hydroquinone for food safety and environmental monitoring. In this paper, a nano-zinc oxide-high purity graphite/glass carbon (ZnO-C/GC) composite electrochemical sensor was prepared. The experimental materials were simple and low cost. The structural characteristics, surface characteristics and conductivity of nano-ZnO-C composites material were analyzed by atomic force microscope (AFM), field emission scanning electron microscope (SEM), X-ray diffraction (XRD) and electrochemical AC impedance (EIS). Hydroquinone by cyclic voltammetry (CV) was used to realize the detection of hydroquinone by nano-ZnO-C/GC composite electrochemical sensor. The electrocatalytic mechanism of hydroquinone was explored. The electrochemical sensor has good stability and accuracy for the detection of hydroquinone, a wide linear range, and a detection limit of 1.0 × 10-8 mol/L.
参考文献

[1] 王 勇, 张 闪, 董 莹, 等. 水体中邻苯二酚和对苯二酚检测方法的研究进展[J]. 化学研究, 2015, 26(1): 100-104.

[2] GAO W H, LEGIDO-QUIGLEY C. Fast and sensitive high performance liquid chromatography analysis of cosmetic creams for hydroquinone, phenol and six preservatives[J]. Journal of Chromatography A, 2011, 1218(28): 4307-4311.

[3] ALQARNI M H, ALAM P, SHAKEEL F, et al. Highly sensitive and ecologically sustainable reversed-phase HPTLC method for the determination of hydroquinone in commercial whitening creams[J]. Processes, 2021, 9(9): 1631.

[4] 侯 博, 张万智, 韩永辉, 等. 水体中酚类化合物测定方法的研究进展[J]. 化学试剂, 2019, 41(8): 802-806.

[5] 石志敏. 流动注射化学发光法测定环境水中有机污染物的研究[D]. 新乡: 河南师范大学, 2012.

[6] FAN L F, WU X Q, GUO M D, et al. Cobalt hydroxide film deposited on glassy carbon electrode for electrocatalytic oxidation of hydroquinone[J]. Electrochimica Acta, 2007, 52(11): 3654-3659.

[7] PENG Y, TANG Z R, DONG Y P, et al. Electrochemical detection of hydroquinone based on MoS2/reduced graphene oxide nanocomposites[J]. Journal of Electroanalytical Chemistry, 2018, 816: 38-44.

[8] JIANG H M, WANG S Q, DENG W F, et al. Graphene-like carbon nanosheets as a new electrode material for electrochemical determination of hydroquinone and catechol[J]. Talanta, 2017, 164: 300-306.

[9] HU C X, ZHANG W, ZHENG Z F, et al. Facile preparation of silver nanoparticle decorated RGO nanostructures with enhanced simultaneous detection property for hydroquinone and catechol[J]. Fullerenes, Nanotubes and Carbon Nanostructures, 2023, 31(4): 349-356.

[10] KHAND N H, PALABIYIK I M, BULEDI J A, et al. Functional Co3O4 nanostructure-based electrochemical sensor for direct determination of ascorbic acid in pharmaceutical samples[J]. Journal of Nanostructure in Chemistry, 2021, 11(3): 1-14.

[11] DE CARVALHO R M, MELLO C, KUBOTA L T. Simultaneous determination of phenol isomers in binary mixtures by differential pulse voltammetry using carbon fibre electrode and neural network with pruning as a multivariate calibration tool[J]. Analytica Chimica Acta, 2000, 420(1): 109-121.

[12] MANJUNATHA J G. Poly (adenine) modified graphene-based voltammetric sensor for the electrochemical determination of catechol, hydroquinone and resorcinol[J]. The Open Chemical Engineering Journal, 2020, 14: 52-62.

[13] 霍燕燕, 雪 瑶, 武江艳, 等. 基于纳米铂修饰电极的电化学法测定对苯二酚[J]. 分析试验室, 2020, 39(10): 1199-1202.

[14] LU Z Y, WANG Y E, ZHU Y M, et al. Popcorn-derived porous carbon based electrochemical sensor for simultaneous determination of hydroquinone, catechol and nitrite[J]. ChemistrySelect, 2022, 7(24): 2-10.

[15] 刘建波, 苏 伟, 刘 静, 等. 基于碳纳米管的对苯二酚电化学传感器的构置与应用[J]. 化学研究与应用, 2022, 34(4): 764-769.

[16] HARSHITHA B T, MANJUNATHA J G, PUSHPANJALI P A, et al. Efficient electrochemical determination of catechol with hydroquinone at poly (L-serine) layered carbon paste electrode[J]. Chemistry Select, 2021, 6(26): 6764-6772.

[17] AKINOGLU E M, KTELHN E, PAMPEL J, et al. Nanoscopic carbon electrodes: structure, electrical properties and application for electrochemistry[J]. Carbon, 2018, 130: 768-774.

[18] CAO Z Y, SU B. Light enhanced electrochemistry and electrochemiluminescence of luminol at glassy carbon electrodes[J]. Electrochemistry Communications, 2019, 98: 47-52.

[19] ALIM S, VEJAYAN J, YUSOFF M M, et al. Recent uses of carbon nanotubes & gold nanoparticles in electrochemistry with application in biosensing: a review[J]. Biosensors and Bioelectronics, 2018, 121: 125-136.

[20] 吴 丽, 吴 限, 张宇佳, 等. 氧化锌/氧化镁纳米复合材料的制备及其光催化性能研究[J]. 化工新型材料, 2021, 49(2): 191-194.

[21] ALLWAR A, SETYANI A, SUGESTI U, et al. Physical-chemical characterization of nano-zinc oxide/activated carbon composite for phenol removal from aqueous solution[J]. Bulletin of Chemical Reaction Engineering & Catalysis, 2021, 16(1): 136-147.

[22] HAO J X, JI L D, WU K B, et al. Electrochemistry of ZnO@reduced graphene oxides[J]. Carbon, 2018, 130: 480-486.

[23] MIAO F J, WU W Y, MIAO R, et al. Graphene/nano-ZnO hybrid materials modify Ni-foam for high-performance electrochemical glucose sensors[J]. Ionics, 2018, 24(12): 4005-4014.

[24] 崔 虹, 陈 星, 刘宝林. 基于氧化锌@金纳米复合材料/玻碳电极电化学传感器检测双酚A[J]. 食品安全质量检测学报, 2022, 13(10): 3237-3242.

[25] 王朝琳, 魏友利, 李 薇, 等. 基于氧化锌/碳纳米纤维材料的氧氟沙星电化学传感器的构建及应用[J]. 分析试验室, 2022, 41(2): 171-174.

[26] 王海辉. 氧化锌纳米阵列电化学传感器的构建及应用[D]. 开封: 河南大学, 2017.

[27] 刘志敏, 胡乐乾, 沈国励, 等. 基于ZnO溶胶-凝胶固定的酪氨酸酶传感器的研制[J]. 分析科学学报, 2007, 23(5): 555-558.

[28] 田振华, 王 颖, 何静瑄. 羧甲基纤维素钠改性球状纳米氧化锌的制备及其结构与性能[J]. 陕西科技大学学报, 2022, 40(3): 1-6+51.

[29] 付家鹏, 罗 磊, 陈 克, 等. 氧化锌纳米纤维的制备、表征及电化学性能研究[J]. 电源技术, 2015, 39(4): 749-752.

[30] 李焕同, 曹代勇, 张卫国, 等. 高煤级煤石墨化轨迹阶段性的XRD和Raman光谱表征[J]. 光谱学与光谱分析, 2021, 41(8): 2491-2498.

[31] 庄全超, 许金梅, 田景华, 等. 石墨负极电化学扫描循环过程的EIS、Raman光谱和XRD研究[J]. 高等学校化学学报, 2008, 29(5): 973-976.

[32] ROYCHOUDHURY A, BASU S, JHA S K. Dopamine biosensor based on surface functionalized nanostructured nickel oxide platform[J]. Biosensors and Bioelectronics, 2016, 84: 72-81.

[33] LAVIRON E. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1979, 101(1): 19-28.

[34] 孙志远, 樊文芳, 王 勇, 等. 基于聚中性红/多壁碳纳米管复合材料的比率型电化学传感器检测雌三醇[J]. 分析化学, 2023, 51(1): 42-52.

[35] ZHANG Y, WANG L T, LU D B, et al. Sensitive determination of bisphenol A base on arginine functionalized nanocomposite graphene film[J]. Electrochimica Acta, 2012, 80: 77-83.

[36] DE OLIVEIRA I R W Z, VIEIRA I C. Immobilization procedures for the development of a biosensor for determination of hydroquinone using chitosan and gilo (Solanum gilo)[J]. Enzyme and Microbial Technology, 2006, 38(3/4): 449-456.

[37] DE OLIVEIRA I R W Z, DE BARROS OSRIO R E H M, NEVES A, et al. Biomimetic sensor based on a novel copper complex for the determination of hydroquinone in cosmetics[J]. Sensors and Actuators B: Chemical, 2007, 122(1): 89-94.

[38] YAO Y Z, LIU Y C, YANG Z S. A novel electrochemical sensor based on a glassy carbon electrode modified with Cu-MWCNT nanocomposites for determination of hydroquinone[J]. Analytical Methods, 2016, 8(12): 2568-2575.

娄童芳, 徐红杰, 潘继民, 张炎, 雷红红. 基于纳米氧化锌-石墨复合材料的电化学传感器检测对苯二酚[J]. 硅酸盐通报, 2023, 42(8): 3005. LOU Tongfang, XU Hongjie, PAN Jimin, ZHANG Yan, LEI Honghong. Electrochemical Sensor Based on Nano-ZnO-C Composite Materials for Determination of Hydroquinone[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(8): 3005.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!