光学学报, 2022, 42 (17): 1704002, 网络出版: 2022-09-16   

基于新型金属卤化物半导体和闪烁体的X射线探测与成像研究进展 下载: 2121次特邀综述

Research Progress of X-Ray Detection and Imaging Based on Emerging Metal Halide Semiconductors and Scintillators
作者单位
浙江大学光电科学与工程学院现代光学仪器国家重点实验室,浙江 杭州 310027
引用该论文

马文博, 匡翠方, 刘旭, 杨旸. 基于新型金属卤化物半导体和闪烁体的X射线探测与成像研究进展[J]. 光学学报, 2022, 42(17): 1704002.

Wenbo Ma, Cuifang Kuang, Xu Liu, Yang Yang. Research Progress of X-Ray Detection and Imaging Based on Emerging Metal Halide Semiconductors and Scintillators[J]. Acta Optica Sinica, 2022, 42(17): 1704002.

参考文献

[1] van Eijk C W E. Inorganic scintillators in medical imaging[J]. Physics in Medicine and Biology, 2002, 47(8): R85-R106.

[2] Haff R P, Toyofuku N. X-ray detection of defects and contaminants in the food industry[J]. Sensing and Instrumentation for Food Quality and Safety, 2008, 2(4): 262-273.

[3] Duan X H, Cheng J P, Zhang L, et al. X-ray cargo container inspection system with few-view projection imaging[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 598(2): 439-444.

[4] Spahn M. X-ray detectors in medical imaging[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2013, 731: 57-63.

[5] Chapman H N, Fromme P, Barty A, et al. Femtosecond X-ray protein nanocrystallography[J]. Nature, 2011, 470(7332): 73-77.

[6] Als-NielsenJ, McMorrowD. Elements of modern X-ray physics[M]. 2nd ed. Hoboken: John Wiley & Sons Inc., 2011.

[7] MosesW W. Scintillator requirements for medical imaging[M]. Berkeley: Lawrence Berkeley National Lab, 1999.

[8] Lin E C. Radiation risk from medical imaging[J]. Mayo Clinic Proceedings, 2010, 85(12): 1142-1146.

[9] KnollG F. Radiation detection and measurement[M]. 4th ed. Hoboken: John Wiley & Sons Inc., 2010

[10] Rowlands J A. Material change for X-ray detectors[J]. Nature, 2017, 550(7674): 47-48.

[11] Zheng X P, Chen B, Dai J, et al. Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations[J]. Nature Energy, 2017, 2: 17102.

[12] Xiao Z G, Kerner R A, Zhao L F, et al. Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites[J]. Nature Photonics, 2017, 11(2): 108-115.

[13] Dou L T, Yang Y, You J B, et al. Solution-processed hybrid perovskite photodetectors with high detectivity[J]. Nature Communications, 2014, 5: 5404.

[14] Saliba M, Wood S M, Patel J B, et al. Structured organic-inorganic perovskite toward a distributed feedback laser[J]. Advanced Materials, 2016, 28(5): 923-929.

[15] 杨晓晖, 王琦, 肖择武, 等. 混合阳离子钙钛矿的高效率绿色发光器件[J]. 光学学报, 2019, 39(10): 1016002.

    Yang X H, Wang Q, Xiao Z W, et al. Highly efficient green-emitting devices based on mixed-cation perovskites[J]. Acta Optica Sinica, 2019, 39(10): 1016002.

[16] 殷录桥, 张豆豆, 王胜, 等. 基于CsPbBr3钙钛矿量子点的白光LED器件的电流稳定性研究[J]. 光学学报, 2021, 41(19): 1923002.

    Yin L Q, Zhang D D, Wang S, et al. Research on current stability of white LED devices based on CsPbBr3 perovskite quantum dots[J]. Acta Optica Sinica, 2021, 41(19): 1923002.

[17] Wei H T, Fang Y J, Mulligan P, et al. Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals[J]. Nature Photonics, 2016, 10(5): 333-339.

[18] Pan W C, Wu H D, Luo J J, et al. Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit[J]. Nature Photonics, 2017, 11(11): 726-732.

[19] Zhuang R Z, Wang X J, Ma W B, et al. Highly sensitive X-ray detector made of layered perovskite-like (NH4)3Bi2I9 single crystal with anisotropic response[J]. Nature Photonics, 2019, 13(9): 602-608.

[20] Wei W, Zhang Y, Xu Q, et al. Monolithic integration of hybrid perovskite single crystals with heterogenous substrate for highly sensitive X-ray imaging[J]. Nature Photonics, 2017, 11(5): 315-321.

[21] Kim Y C, Kim K H, Son D Y, et al. Printable organometallic perovskite enables large-area, low-dose X-ray imaging[J]. Nature, 2017, 550(7674): 87-91.

[22] Yakunin S, Sytnyk M, Kriegner D, et al. Detection of X-ray photons by solution-processed lead halide perovskites[J]. Nature Photonics, 2015, 9(7): 444-449.

[23] Chen Q S, Wu J, Ou X Y, et al. All-inorganic perovskite nanocrystal scintillators[J]. Nature, 2018, 561(7721): 88-93.

[24] Cao F, Yu D J, Ma W B, et al. Shining emitter in a stable host: design of halide perovskite scintillators for X-ray imaging from commercial concept[J]. ACS Nano, 2020, 14(5): 5183-5193.

[25] Zhu W J, Ma W B, Su Y R, et al. Low-dose real-time X-ray imaging with nontoxic double perovskite scintillators[J]. Light: Science & Applications, 2020, 9: 112.

[26] Meyer-Ilse W, Hamamoto D, Nair A, et al. High resolution protein localization using soft X-ray microscopy[J]. Journal of Microscopy, 2001, 201(3): 395-403.

[27] Su Y R, Ma W B, Yang Y. Perovskite semiconductors for direct X-ray detection and imaging[J]. Journal of Semiconductors, 2020, 41(5): 051204.

[28] MartinJ E. Physics for radiation protection: a handbook[M]. 2nd ed. Weinheim: John Wiley & Sons Inc., 2006.

[29] Wei H T, Huang J S. Halide lead perovskites for ionizing radiation detection[J]. Nature Communications, 2019, 10: 1066.

[30] Kasap S, Frey J B, Belev G, et al. Amorphous and polycrystalline photoconductors for direct conversion flat panel X-ray image sensors[J]. Sensors, 2011, 11(5): 5112-5157.

[31] Devanathan R, Corrales L R, Gao F, et al. Signal variance in gamma-ray detectors: a review[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2006, 565(2): 637-649.

[32] Kabir M Z. Effects of charge carrier trapping on polycrystalline PbO X-ray imaging detectors[J]. Journal of Applied Physics, 2008, 104(7): 074506.

[33] Wu H D, Ge Y S, Niu G D, et al. Metal halide perovskites for X-ray detection and imaging[J]. Matter, 2021, 4(1): 144-163.

[34] Klein C A. Bandgap dependence and related features of radiation ionization energies in semiconductors[J]. Journal of Applied Physics, 1968, 39(4): 2029-2038.

[35] Alig R C, Bloom S. Electron-hole-pair creation energies in semiconductors[J]. Physical Review Letters, 1975, 35(22): 1522-1525.

[36] Maddalena F, Tjahjana L, Xie A Z, et al. Inorganic, organic, and perovskite halides with nanotechnology for high-light yield X- and γ-ray scintillators[J]. Crystals, 2019, 9(2): 88.

[37] CapperP, RudolphP. Crystal growth technology: semiconductors and dielectrics[M]. Weinheim: John Wiley & Sons Inc., 2010.

[38] PowsnerR A, PalmerM R, PowsnerE R. Essentials of nuclear medicine physics and instrumentation[M]. 3rd ed. Chichester: John Wiley & Sons Inc., 2013.

[39] Dujardin C, Auffray E, Bourret-Courchesne E, et al. Needs, trends, and advances in inorganic scintillators[J]. IEEE Transactions on Nuclear Science, 2018, 65(8): 1977-1997.

[40] Rodnyi P A, Dorenbos P, van Eijk C W E. Energy loss in inorganic scintillators[J]. Physica Status Solidi (b), 1995, 187(1): 15-29.

[41] Dorenbos P. Scintillation mechanisms in Ce3+ doped halide scintillators[J]. Physica Status Solidi (a), 2005, 202(2): 195-200.

[42] Zhou Y, Chen J, Bakr O M, et al. Metal halide perovskites for X-ray imaging scintillators and detectors[J]. ACS Energy Letters, 2021, 6(2): 739-768.

[43] Lempicki A, Wojtowicz A J, Berman E. Fundamental limits of scintillator performance[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1993, 333(2/3): 304-311.

[44] ter Weele D N, Schaart D R, Dorenbos P. The effect of self-absorption on the scintillation properties of Ce3+ activated LaBr3 and CeBr3[J]. IEEE Transactions on Nuclear Science, 2014, 61(1): 683-688.

[45] DeychR, DolazzaE. New trends in X-ray CT imaging[M]//Tavernier S, Gektin A, Grinyov B, et al. Radiation detectors for medical applications. NATO security through science series. Dordrecht: Springer Netherlands, 2006: 15-35.

[46] Büchele P, Richter M, Tedde S F, et al. X-ray imaging with scintillator-sensitized hybrid organic photodetectors[J]. Nature Photonics, 2015, 9(12): 843-848.

[47] Samei E, Flynn M J, Reimann D A. A method for measuring the presampled MTF of digital radiographic systems using an edge test device[J]. Medical Physics, 1998, 25(1): 102-113.

[48] Kabir M Z, Kasap S O. Modulation transfer function of photoconductive X-ray image detectors: effects of charge carrier trapping[J]. Journal of Physics D: Applied Physics, 2003, 36(19): 2352-2358.

[49] Hunter D M, Belev G, Kasap S, et al. Measured and calculated K-fluorescence effects on the MTF of an amorphous-selenium based CCD X-ray detector[J]. Medical Physics, 2012, 39(2): 608-622.

[50] Kozorezov A G, Wigmore J K, Owens A, et al. The effect of carrier diffusion on the characteristics of semiconductor imaging arrays[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2004, 531(1/2): 52-55.

[51] Ma W B, Su Y R, Zhang Q S, et al. Thermally activated delayed fluorescence (TADF) organic molecules for efficient X-ray scintillation and imaging[J]. Nature Materials, 2022, 21(2): 210-216.

[52] van HeerdenP J. The crystalcounter[M]. Germany: Noord-Hollandsche Uitg. Mij, 1945.

[53] McKay K G. A germanium counter[J]. Physical Review, 1949, 76(10): 1537.

[54] Guerra M, Manso M, Longelin S, et al. Performance of three different Si X-ray detectors for portable XRF spectrometers in cultural heritage applications[J]. Journal of Instrumentation, 2012, 7(10): C10004.

[55] Owens A, Peacock A. Compound semiconductor radiation detectors[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2004, 531(1/2): 18-37.

[56] Luke P N, Rossington C S, Wesela M F. Low energy X-ray response of Ge detectors with amorphous Ge entrance contacts[J]. IEEE Transactions on Nuclear Science, 1994, 41(4): 1074-1079.

[57] Szeles C. CdZnTe and CdTe materials for X-ray and gamma ray radiation detector applications[J]. Physica Status Solidi (b), 2004, 241(3): 783-790.

[58] del Sordo S, Abbene L, Caroli E, et al. Progress in the development of CdTe and CdZnTe semiconductor radiation detectors for astrophysical and medical applications[J]. Sensors, 2009, 9(5): 3491-3526.

[59] Schieber M, Hermon H, Zuck A, et al. Thick films of X-ray polycrystalline mercuric iodide detectors[J]. Journal of Crystal Growth, 2001, 225(2/3/4): 118-123.

[60] Street R A, Ready S E, van Schuylenbergh K, et al. Comparison of PbI2 and HgI2 for direct detection active matrix X-ray image sensors[J]. Journal of Applied Physics, 2002, 91(5): 3345-3355.

[61] Zentai G, Schieber M, Partain L, et al. Large area mercuric iodide and lead iodide X-ray detectors for medical and non-destructive industrial imaging[J]. Journal of Crystal Growth, 2005, 275(1/2): e1327-e1331.

[62] Yun M S, Cho S H, Lee R N, et al. Investigation of PbI2 film fabricated by a new sedimentation method as an X-ray conversion material[J]. Japanese Journal of Applied Physics, 2010, 49(4): 041801.

[63] Shah K S, Street R A, Dmitriyev Y, et al. X-ray imaging with PbI2-based A-Si∶H flat panel detectors[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2001, 458(1/2): 140-147.

[64] Destefano N, Mulato M. Influence of multi-depositions on the final properties of thermally evaporated TlBr films[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2010, 624(1): 114-117.

[65] Hitomi K, Kikuchi Y, Shoji T, et al. Improvement of energy resolutions in TlBr detectors[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 607(1): 112-115.

[66] Brenner T M, Egger D A, Kronik L, et al. Hybrid organic: inorganic perovskites: low-cost semiconductors with intriguing charge-transport properties[J]. Nature Reviews Materials, 2016, 1: 15007.

[67] de Arquer F P G, Armin A, Meredith P, et al. Solution-processed semiconductors for next-generation photodetectors[J]. Nature Reviews Materials, 2017, 2: 16100.

[68] Kasap S. Low-cost X-ray detectors[J]. Nature Photonics, 2015, 9(7): 420-421.

[69] Niu G D, Guo X D, Wang L D. Review of recent progress in chemical stability of perovskite solar cells[J]. Journal of Materials Chemistry A, 2015, 3(17): 8970-8980.

[70] Lang F, Nickel N H, Bundesmann J, et al. Radiation hardness and self-healing of perovskite solar cells[J]. Advanced Materials, 2016, 28(39): 8726-8731.

[71] Yang S, Xu Z Y, Xue S, et al. Organohalide lead perovskites: more stable than glass under gamma-ray radiation[J]. Advanced Materials, 2019, 31(4): e1805547.

[72] Huang J S, Yuan Y B, Shao Y C, et al. Understanding the physical properties of hybrid perovskites for photovoltaic applications[J]. Nature Reviews Materials, 2017, 2: 17042.

[73] Lang F, Shargaieva O, Brus V V, et al. Influence of radiation on the properties and the stability of hybrid perovskites[J]. Advanced Materials, 2018, 30(3): 1702905.

[74] Dong Q F, Fang Y J, Shao Y C, et al. Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals[J]. Science, 2015, 347(6225): 967-970.

[75] Wang X, Zhao D W, Qiu Y P, et al. PIN diodes array made of perovskite single crystal for X-ray imaging[J]. Physica Status Solidi (RRL)-Rapid Research Letters, 2018, 12(10): 1800380.

[76] Ye F, Lin H, Wu H D, et al. High-quality cuboid CH3NH3PbI3 single crystals for high performance X-ray and photon detectors[J]. Advanced Functional Materials, 2019, 29(6): 1806984.

[77] Huang Y M, Qiao L, Jiang Y Z, et al. A-site cation engineering for highly efficient MAPbI3 single-crystal X-ray detector[J]. Angewandte Chemie, 2019, 58(49): 17834-17842.

[78] Eperon G E, Paterno G M, Sutton R J, et al. Inorganic caesium lead iodide perovskite solar cells[J]. Journal of Materials Chemistry A, 2015, 3(39): 19688-19695.

[79] Li J C, Du X Y, Niu G D, et al. Rubidium doping to enhance carrier transport in CsPbBr3 single crystals for high-performance X-ray detection[J]. ACS Applied Materials & Interfaces, 2020, 12(1): 989-996.

[80] Zhang B B, Liu X, Xiao B, et al. High-performance X-ray detection based on one-dimensional inorganic halide perovskite CsPbI3[J]. The Journal of Physical Chemistry Letters, 2020, 11(2): 432-437.

[81] Liu J Y, Shabbir B, Wang C J, et al. Flexible, printable soft-X-ray detectors based on all-inorganic perovskite quantum dots[J]. Advanced Materials, 2019, 31(30): e1901644.

[82] Wu C C, Zhang Q H, Liu G H, et al. From Pb to Bi: a promising family of Pb-free optoelectronic materials and devices[J]. Advanced Energy Materials, 2020, 10(13): 1902496.

[83] Yang B, Pan W C, Wu H D, et al. Heteroepitaxial passivation of Cs2AgBiBr6 wafers with suppressed ionic migration for X-ray imaging[J]. Nature Communications, 2019, 10: 1989.

[84] Steele J A, Pan W C, Martin C, et al. Photophysical pathways in highly sensitive Cs2AgBiBr6 double-perovskite single-crystal X-ray detectors[J]. Advanced Materials, 2018, 30(46): 1804450.

[85] Yin L X, Wu H D, Pan W C, et al. Controlled cooling for synthesis of Cs2AgBiBr6 single crystals and its application for X-ray detection[J]. Advanced Optical Materials, 2019, 7(19): 1900491.

[86] Yuan W N, Niu G D, Xian Y M, et al. In situ regulating the order-disorder phase transition in Cs2AgBiBr6 single crystal toward the application in an X-ray detector[J]. Advanced Functional Materials, 2019, 29(20): 1900234.

[87] Xia M L, Yuan J H, Niu G D, et al. Unveiling the structural descriptor of A3B2X9 perovskite derivatives toward X-ray detectors with low detection limit and high stability[J]. Advanced Functional Materials, 2020, 30(24): 1910648.

[88] Yao L, Niu G D, Yin L X, et al. Bismuth halide perovskite derivatives for direct X-ray detection[J]. Journal of Materials Chemistry C, 2020, 8(4): 1239-1243.

[89] Liu Y C, Xu Z, Yang Z, et al. Inch-size 0D-structured lead-free perovskite single crystals for highly sensitive stable X-ray imaging[J]. Matter, 2020, 3(1): 180-196.

[90] Li W, Xin D Y, Tie S J, et al. Zero-dimensional lead-free FA3Bi2I9 single crystals for high-performance X-ray detection[J]. The Journal of Physical Chemistry Letters, 2021, 12(7): 1778-1785.

[91] Zhang Y X, Liu Y C, Xu Z, et al. Nucleation-controlled growth of superior lead-free perovskite Cs3Bi2I9 single-crystals for high-performance X-ray detection[J]. Nature Communications, 2020, 11: 2304.

[92] Li X, Zhang P, Hua Y Q, et al. Ultralow detection limit and robust hard X-ray imaging detector based on inch-sized lead-free perovskite Cs3Bi2Br9 single crystals[J]. ACS Applied Materials & Interfaces, 2022, 14(7): 9340-9351.

[93] Shrestha S, Fischer R, Matt G J, et al. High-performance direct conversion X-ray detectors based on sintered hybrid lead triiodide perovskite wafers[J]. Nature Photonics, 2017, 11(7): 436-440.

[94] Pan W C, Yang B, Niu G D, et al. Hot-pressed CsPbBr3 quasi-monocrystalline film for sensitive direct X-ray detection[J]. Advanced Materials, 2019, 31(44): 1904405.

[95] Zhao J J, Zhao L, Deng Y H, et al. Perovskite-filled membranes for flexible and large-area direct-conversion X-ray detector arrays[J]. Nature Photonics, 2020, 14(10): 612-617.

[96] Tian Y, Cao W H, Luo X X, et al. Preparation and luminescence property of Gd2O2S∶Tb X-ray nano-phosphors using the complex precipitation method[J]. Journal of Alloys and Compounds, 2007, 433(1/2): 313-317.

[97] Yang P, Harmon C D, Doty F P, et al. Effect of humidity on scintillation performance in Na and Tl activated CsI crystals[J]. IEEE Transactions on Nuclear Science, 2014, 61(2): 1024-1031.

[98] Blahuta S, Bessière A, Viana B, et al. Evidence and consequences of Ce4+ in LYSO∶Ce, Ca and LYSO∶Ce, Mg single crystals for medical imaging applications[J]. IEEE Transactions on Nuclear Science, 2013, 60(4): 3134-3141.

[99] Xu J, Shi Y, Xie J J, et al. Fabrication, microstructure, and luminescent properties of Ce3+-doped Lu3Al5O12 (Ce∶LuAG) transparent ceramics by low-temperature vacuum sintering[J]. Journal of the American Ceramic Society, 2013, 96(6): 1930-1936.

[100] Cherepy N J, Hull G, Drobshoff A D, et al. Strontium and Barium iodide high light yield scintillators[J]. Applied Physics Letters, 2008, 92(8): 083508.

[101] Birowosuto M D, Cortecchia D, Drozdowski W, et al. X-ray scintillation in lead halide perovskite crystals[J]. Scientific Reports, 2016, 6: 37254.

[102] Kobayashi M, Omata K, Sugimoto S, et al. Scintillation characteristics of CsPbCl3 single crystals[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2008, 592(3): 369-373.

[103] Mykhaylyk V B, Kraus H, Kapustianyk V, et al. Bright and fast scintillations of an inorganic halide perovskite CsPbBr3 crystal at cryogenic temperatures[J]. Scientific Reports, 2020, 10: 8601.

[104] Xie A Z, Nguyen T H, Hettiarachchi C, et al. Thermal quenching and dose studies of X-ray luminescence in single crystals of halide perovskites[J]. The Journal of Physical Chemistry C, 2018, 122(28): 16265-16273.

[105] Shibuya K, Koshimizu M, Takeoka Y, et al. Scintillation properties of (C6H13NH3)2PbI4: exciton luminescence of an organic/inorganic multiple quantum well structure compound induced by 2.0 MeV protons[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions With Materials and Atoms, 2002, 194(2): 207-212.

[106] Shibuya K, Koshimizu M, Asai K, et al. Quantum confinement for large light output from pure semiconducting scintillators[J]. Applied Physics Letters, 2004, 84(22): 4370-4372.

[107] Shibuya K, Koshimizu M, Murakami H, et al. Development of ultra-fast semiconducting scintillators using quantum confinement effect[J]. Japanese Journal of Applied Physics, 2004, 43(10B): L1333-L1336.

[108] van EijkC W E, de HaasJ T M,, RodnyiP A, et al. Scintillation properties of a crystal of (C6H5(CH2)2NH3)2PbBr4[C]//2008 IEEE Nuclear Science Symposium Conference Record, October 19-25, 2008, Dresden, Germany. New York: IEEE Press, 2008: 3525-3528.

[109] Kishimoto S, Shibuya K, Nishikido F, et al. Subnanosecond time-resolved X-ray measurements using an organic-inorganic perovskite scintillator[J]. Applied Physics Letters, 2008, 93(26): 261901.

[110] Kawano N, Koshimizu M, Okada G, et al. Scintillating organic-inorganic layered perovskite-type compounds and the gamma-ray detection capabilities[J]. Scientific Reports, 2017, 7: 14754.

[111] Xie A Z, Maddalena F, Witkowski M E, et al. Library of two-dimensional hybrid lead halide perovskite scintillator crystals[J]. Chemistry of Materials, 2020, 32(19): 8530-8539.

[112] Li Y, Chen L, Liu B, et al. Scintillation performance of two-dimensional perovskite (BA)2PbBr4 microcrystals[J]. Journal of Materials Chemistry C, 2021, 9(47): 17124-17128.

[113] Horimoto A, Kawano N, Nakauchi D, et al. Scintillation properties of organic-inorganic perovskite-type compounds with fluorophenethylamine[J]. Optical Materials, 2020, 101: 109686.

[114] Kawano N, Nakauchi D, Akatsuka M, et al. Photoluminescence and scintillation characteristics of organic-inorganic layered perovskite-type compounds with a methoxyphenethylamine[J]. Journal of Luminescence, 2022, 241: 118467.

[115] Kawano N, Nakauchi D, Kimura H, et al. Photoluminescence and scintillation properties of (C6H5C2H4NH3)2Pb1-xMnxBr4[J]. Japanese Journal of Applied Physics, 2019, 58(8): 082004.

[116] Nakauchi D, Kawano N, Kawaguchi N, et al. Luminescence and scintillation properties of (C6H5(CH2)2NH3)2(Ba, Pb)Br4 with self-organized bi-dimensional quantum-well structures[J]. Japanese Journal of Applied Physics, 2020, 59(SC): SCCB04.

[117] Akatsuka M, Kawano N, Kato T, et al. Development of scintillating 2D quantum confinement materials: (C6H5C2H4NH3)2Pb1-x[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2020, 954: 161372.

[118] Xie A Z, Hettiarachchi C, Maddalena F, et al. Lithium-doped two-dimensional perovskite scintillator for wide-range radiation detection[J]. Communications Materials, 2020, 1: 37.

[119] Maddalena F, Xie A Z, Arramel, et al. Effect of commensurate lithium doping on the scintillation of two-dimensional perovskite crystals[J]. Journal of Materials Chemistry C, 2021, 9(7): 2504-2512.

[120] Diguna L J, Kaffah S, Mahyuddin M H, et al. Scintillation in (C6H5CH2NH3)2SnBr4: green-emitting lead-free perovskite halide materials[J]. RSC Advances, 2021, 11(34): 20635-20640.

[121] Cao J T, Guo Z, Zhu S, et al. Preparation of lead-free two-dimensional-layered (C8H17NH3)2SnBr4 perovskite scintillators and their application in X-ray imaging[J]. ACS Applied Materials & Interfaces, 2020, 12(17): 19797-19804.

[122] Protesescu L, Yakunin S, Bodnarchuk M I, et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X=Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut[J]. Nano Letters, 2015, 15(6): 3692-3696.

[123] Heo J H, Shin D H, Park J K, et al. High-performance next-generation perovskite nanocrystal scintillator for nondestructive X-ray imaging[J]. Advanced Materials, 2018, 30(40): 1801743.

[124] Zhang Y H, Sun R J, Ou X Y, et al. Metal halide perovskite nanosheet for X-ray high-resolution scintillation imaging screens[J]. ACS Nano, 2019, 13(2): 2520-2525.

[125] Wang C Y, Lin H, Zhang Z J, et al. X-ray excited CsPb(Cl, Br)3 perovskite quantum dots-glass composite with long-lifetime[J]. Journal of the European Ceramic Society, 2020, 40(5): 2234-2238.

[126] Ma W B, Jiang T M, Yang Z, et al. Highly resolved and robust dynamic X-ray imaging using perovskite glass-ceramic scintillator with reduced light scattering[J]. Advanced Science, 2021, 8(15): 2003728.

[127] Xu Y S, Zhao X D, Xia M L, et al. Perovskite nanocrystal doped all-inorganic glass for X-ray scintillators[J]. Journal of Materials Chemistry C, 2021, 9(16): 5452-5459.

[128] Zhang H, Yang Z, Zhou M, et al. Reproducible X-ray imaging with a perovskite nanocrystal scintillator embedded in a transparent amorphous network structure[J]. Advanced Materials, 2021, 33(40): 2102529.

[129] Cho S, Kim S, Kim J, et al. Hybridisation of perovskite nanocrystals with organic molecules for highly efficient liquid scintillators[J]. Light: Science & Applications, 2020, 9: 156.

[130] Wu X C, Guo Z, Zhu S, et al. Ultrathin, transparent, and high density perovskite scintillator film for high resolution X-ray microscopic imaging[J]. Advanced Science, 2022, 9(17): 2200831.

[131] Williams R T, Wolszczak W W, Yan X H, et al. Perovskite quantum-dot-in-host for detection of ionizing radiation[J]. ACS Nano, 2020, 14(5): 5161-5169.

[132] Li X M, Meng C F, Huang B, et al. All-perovskite integrated X-ray detector with ultrahigh sensitivity[J]. Advanced Optical Materials, 2020, 8(12): 2000273.

[133] Gandini M, Villa I, Beretta M, et al. Efficient, fast and reabsorption-free perovskite nanocrystal-based sensitized plastic scintillators[J]. Nature Nanotechnology, 2020, 15(6): 462-468.

[134] Wang Z F, Sun R J, Liu N Q, et al. X-Ray imager of 26-µm resolution achieved by perovskite assembly[J]. Nano Research, 2022, 15(3): 2399-2404.

[135] Hu Q S, Deng Z Z, Hu M C, et al. X-ray scintillation in lead-free double perovskite crystals[J]. Science China Chemistry, 2018, 61(12): 1581-1586.

[136] Zeng Z C, Huang B L, Wang X, et al. Multimodal luminescent Yb3+/Er3+/Bi3+-doped perovskite single crystals for X-ray detection and anti-counterfeiting[J]. Advanced Materials, 2020, 32(43): 2004506.

[137] Wang Z L, Xu X M, Wang S H, et al. Cerium doping double perovskite scintillator for sensitive X-ray detection and imaging[J]. Chemistry, 2021, 27(35): 9071-9076.

[138] Yang B, Yin L X, Niu G D, et al. Lead-free halide Rb2CuBr3 as sensitive X-ray scintillator[J]. Advanced Materials, 2019, 31(44): 1904711.

[139] Lian L Y, Zheng M Y, Zhang W Z, et al. Efficient and reabsorption-free radioluminescence in Cs3Cu2I5 nanocrystals with self-trapped excitons[J]. Advanced Science, 2020, 7(11): 2000195.

马文博, 匡翠方, 刘旭, 杨旸. 基于新型金属卤化物半导体和闪烁体的X射线探测与成像研究进展[J]. 光学学报, 2022, 42(17): 1704002. Wenbo Ma, Cuifang Kuang, Xu Liu, Yang Yang. Research Progress of X-Ray Detection and Imaging Based on Emerging Metal Halide Semiconductors and Scintillators[J]. Acta Optica Sinica, 2022, 42(17): 1704002.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!