作者单位
摘要
激光与光电子学进展
2024, 61(6): 0600001
孙伯文 1,2,3周国尊 1,3杨振宇 1,3卞殷旭 1,2,3,*[ ... ]刘旭 1,2,3
作者单位
摘要
1 浙江大学极端光学技术与仪器全国重点实验室,浙江 杭州 310027
2 浙江大学杭州国际科创中心,浙江 杭州 311215
3 浙江大学光电科学与工程学院,浙江 杭州 310027
针对双光子激光直写片上光子引线波导的纳米级对准需求,提出了基于导星数字匹配与纳米智能对准的方法,实现了高精度、高密度片上光子引线互联纳米结构3D直写加工。面向片上光子引线波导的背景与需求,设计了双光子直写光刻系统的光学系统结构,在硬件上设计了独特的导星,在算法上利用机器视觉的智能识别方法,精确定位了片上光子引线波导连接结构。所刻写的光子引线与硅片波导的平均偏差角度为0.19°,绝对位置平均对准精度为29 nm,标准差为17 nm。所提方案为实现高精度、高密度的光学片上互联提供了一种可行的方法,在芯片封装、多材料功能结构制备、复杂结构修饰等高精度加工领域有着重要的科学和应用意义。
光学设计 光刻 机器视觉 片上光子引线 波导加工 双光子激光直写 
光学学报
2024, 44(5): 0522003
作者单位
摘要
1 浙江大学光电科学与工程学院,极端光学技术与仪器全国重点实验室,浙江 杭州 310027
2 浙江大学杭州国际科创中心,浙江 杭州 311215
荧光超分辨显微技术自20世纪90年代诞生以来,经历了多代创新与发展,其空间分辨率已经远超衍射极限,横向分辨率能够达20 nm以下,可以实现分子尺度的生物成像与动态追踪。新一代超高分辨率显微技术的产生得益于传统超分辨技术的深度发展和结合创新。详细介绍横向分辨率在亚20 nm尺度的新一代荧光超分辨显微技术,并阐述其与传统超分辨原理的联系与区别。此外,针对分辨率的限制因素,就光学系统、扫描策略和样品制备等方面进行探讨,并展望高分辨率荧光显微技术在生物医学领域中的应用前景和发展方向。
荧光显微 超分辨成像 调制照明 单分子定位 扫描策略 
激光与光电子学进展
2024, 61(2): 0211004
介瑞敏 1肖春 1刘旭 1朱琛 1[ ... ]刘波 1,3,*
作者单位
摘要
1 之江实验室光纤传感研究中心,浙江 杭州 311100
2 电子科技大学光纤传感与通信教育部重点实验室,四川 成都 611731
3 浙江大学光电科学与工程学院,浙江 杭州 311100
拉曼分布式光纤温度传感(RDTS)系统因其长期稳定性成为最早商业化的光纤传感产品之一,尤其在油气勘探传感的巨大市场中占据半壁江山。数十年来其技术发展日新月异,本文简述了RDTS的基本原理,着重分析了近年来领域内优化和提升RDTS的方法,分别从系统结构、部件优化、解调方式和智能信号处理等方面系统性地总结了最新研究进展,并通过走访调研了RDTS的全球市场概况及其在各工程领域的典型应用,旨在为分布式温度传感技术的同仁提供有益的参考。
光纤传感 拉曼分布式温度传感 空间分辨率 信噪比 市场调研 
光学学报
2024, 44(1): 0106011
作者单位
摘要
长春理工大学空间光电技术国家地方联合工程研究中心,吉林 长春 130022
基于空间光通信捕获、对准、跟踪技术的基本理念,笔者设计了一套基于伺服控制的水下无线光动态通信捕获跟踪系统,提出了基于跟踪微分器的电机加减速控制技术,设计了转台粗、精跟踪策略。在此基础上,笔者开展仿真验证、室内模拟测试及水下激光光斑捕获跟踪实验。仿真验证结果表明了该系统与算法策略在原理上的可行性;室内模拟测试方位、俯仰跟踪精度分别为0.08 mrad和0.27 mrad,这表明可将本系统应用于水下无线光动态通信;水下激光光斑捕获跟踪实验结果表明系统的捕获概率优于99%,捕获时间少于9 s,水箱施加扰动前后的跟踪精度分别为0.6 mrad和2 mrad。本文为后续开展水下无线光动态通信技术研究提供了一种技术方法和研究思路。
海洋光学 捕获跟踪 跟踪微分器 伺服控制 跟踪精度 
中国激光
2024, 51(2): 0206007
作者单位
摘要
1 浙江大学极端光学技术与仪器全国重点实验室,浙江 杭州 310027
2 之江实验室,浙江 杭州 311121
双光子直写技术凭借其高精度、任意三维结构刻写、高成本效益、材料设计高自由度等特点,已被成功应用到多种微纳光学器件的刻写中。基于双光子直写的微纳光学器件应用不断拓展,对刻写分辨率和通量都提出了更高的需求。超分辨激光纳米直写和高通量激光直写技术使得双光子直写具有nm级精度与cm级尺寸的跨尺度加工能力,进一步拓展了基于双光子直写的微纳光学器件研究领域。本文首先对双光子直写原理进行概述,介绍本课题组在利用双光子直写技术制造衍射光学器件、光纤集成器件方面的研究进展;然后,介绍本课题组在使用超分辨激光直写技术制备纳米光子器件方面的拓展研究,并展示了高精度、高通量激光直写技术在大面积刻写微纳光学器件上的技术优势。
激光直写 双光子直写 微纳光学器件 纳米光刻 高通量刻写 
光学学报
2023, 43(16): 1623013
作者单位
摘要
1 东北石油大学电气信息工程学院,黑龙江 大庆 163318
2 大庆油田信息技术公司,黑龙江 大庆 163453
提出一种基于电流调制的新型单光纤光镊。通过将经电流调制的980 nm激光注入单模光纤,光纤探头的输出功率发生周期性变化,实现了对粒子运动距离和运动速度的可控式操纵。此外,通过调整盖玻片的倾斜角度改变溶液蒸发力的大小,实现了对粒子的稳定捕获。在构建平面锥形纤维探针的基础上,搭建仿真模型,分析粒子的受力情况,并进行实验验证。实验结果表明,通过对激光器的驱动电流进行调制,可以操纵聚苯乙烯小球实现长达22.76 μm的粒子运输,且粒子的运动速度与激光器的调制电流有关,实验结果得到了数值模拟的支持。所提方法使得粒子捕获点的可变式调节和粒子的长距离轴向可控式运输成为可能。
光纤光镊 电流调制 粒子捕获与操纵 生物传感 
光学学报
2023, 43(14): 1406003
张志荣 1,2,3,4夏滑 1,*孙鹏帅 1余润磬 1,3[ ... ]徐启铭 10
作者单位
摘要
1 中国科学院合肥物质科学研究院 安徽光机所 光子器件与材料安徽省重点实验室,合肥 230031
2 中国科学院合肥物质科学研究院 安徽光机所 中国科学院环境光学与技术重点实验室,合肥 230031
3 中国科学技术大学 环境科学与光电技术学院,合肥 230026
4 国防科技大学 先进激光技术安徽省实验室,合肥 230026
5 合肥师范学院 物理与材料工程学院,合肥 230601
6 蚌埠学院 电子与电气工程学院,蚌埠 233030
7 国家管网集团科学技术研究总院分公司,廊坊 065000
8 苏黎世联邦理工大学,量子电子学研究所,瑞士 苏黎世CH-8093
9 思克莱德大学,电气与电子工程系,英国 格拉斯哥G11XW
10 台湾云林科技大学 环境与安全卫生工程系,云林64002
稳定同位素测量技术已经在地球化学、地球物理、农业、生物、临床医学和生态科学等领域得到了众多应用。相对于传统的稳定同位素分析方法,基于激光吸收光谱技术的同位素分析技术,作为一种较新的同位素丰度测量方法,具有选择性好、精度高、体积小、无需样品预处理、可以实时原位同时测量气体浓度及同位素丰度等众多优点,得到了极大的关注和使用。本文主要以目前同位素测量的可调谐半导体激光吸收光谱技术、积分腔吸收光谱技术、腔衰荡吸收光谱技术三种激光吸收光谱方法为例,阐述了其基本原理、谱线选择、温压影响因素及其控制、系统组成结构以及部分应用测试结果。通过对测量系统的压力与温度的稳定控制的前提下,选取了合适的同位素测量谱线对,实现了大气CO2气体的13C测量精度为0.3‰,煤层气CH4气体的13CH4测量精度为1.25‰,冰川水H2O中18O、17O和2H的测量精度分别为0.3‰、0.2‰和0.5‰,以及呼吸气体中的13CO2判识“金标准”。通过分析验证了激光吸收光谱技术在同位素测量方面的可行性和可靠性,也充分说明了基于激光吸收光谱技术的测量方法具有非常好的技术优势,将是光谱研究领域关注的重点内容,并在后续的科学研究中占据举足轻重的作用。
气态同位素 可调谐半导体激光吸收光谱技术 积分腔吸收光谱技术 腔衰荡吸收光谱技术 Gas isotope Tunable diode laser absorption spectroscopy Integrated cavity output spectroscopy Cavity ring-down absorption spectroscopy 
光子学报
2023, 52(3): 0352108
作者单位
摘要
1 浙江大学光电科学与工程学院,浙江 杭州 310027
2 之江实验室智能感知研究中心,浙江 杭州 311100
自适应光学是一种校正波前误差的技术,在地基望远镜、生物成像、人眼像差校正、激光通信等领域中已经有了广泛的应用。与此同时,深度学习技术的快速发展为各个领域带来了全新的方法。为了进一步提升传统自适应光学系统的性能,研究者将自适应光学技术与深度学习相结合,从实时性、抗噪声干扰能力等角度对已有自适应光学系统进行了改进。首先对目前常用的人工神经网络架构进行了介绍,然后详细阐述了近五年深度学习与自适应光学技术相结合的方法,最后对已有方法进行了总结,并对该技术未来的发展方向进行了展望。
激光光学 自适应光学 深度学习 人工神经网络 波前校正 
中国激光
2023, 50(11): 1101009
作者单位
摘要
1 之江实验室智能芯片与器件研究中心,浙江 杭州 311121
2 浙江大学光电科学与工程学院极端光学技术与仪器全国重点实验室,浙江 杭州 310027
3 上海电力大学电子与信息工程学院,上海 200090
4 浙江大学杭州国际科创中心, 浙江 杭州 311200
Overview: Two-photon lithography (TPL) has been a research hotspot in 3D micro/nano writing technology due to its characteristics of high resolution, low thermal influence, a wide range of processed materials, low environmental requirements, and 3D processing capability. It has shown unique advantages in the fields of life science, material engineering, micro/nano optics, microfluidic, micro machinery, and so on. This paper summarizes the research works done by researchers on different writing methods to improve TPL processing efficiency. Single-beam writing is the main method for TPL, which mainly depends on the speed of the scanning device. Single-beam writing has the advantages of simple system and high-quality beam, and it is easy to combine various effects to improve writing results. It mainly includes scanning modes based on the translation stage, galvo, polygon laser scanner, and acousto-optic deflector (AOD) (Fig. 2). All these modes have advantages and disadvantages. As for the scanning speed comparison, polygon laser scanner and AOD have relatively faster writing rates (faster than m/s). Multi-foci parallel lithography can obviously promote efficiency, elevating the speed by dozens or even hundreds of thousands of times, mainly based on spatial light modulator (SLM), digital micromirror device (DMD), microlens array (MLA), diffractive optical elements (DOE), multi-beam interference, and so on (Figs. 3-15). Multi-foci parallel lithography based on SLM is most widely used owing to its high efficiency and ability to flexible and independent control of each single beam, but the refresh rate is still insufficient. DMD has a higher refreshing rate (32 kHz), but the state-of-the-art beam parallelism realized by DMD is severely limited. More parallel beams are further required for improving the processing efficiency. The 2D pattern exposure method based on SLM or DMD can further improve the TPL efficiency with the superiority of generating flexibly designed pattern (Figs. 16-18). However, the 2D projection exposure technology is still difficult to achieve high writing precision, especially the axial resolution. An available method to improve the axial precision is spatially and temporally focusing an ultrafast laser to implement a strong intensity gradient at the spatial focal plane that restricts polymerization within a thin layer. The 3D projection method will be the most efficient writing method in the future, especially in 3D device processing (Figs. 19-20). Researchers used this technique to make hollow tubular and conical helices structures, increasing the processing speed by 600 times. However, the research results show that the current 3D projection can only process simple 3D structures. Further researches on 3D exposure processing of complex structures are expected, which will effectively expand its application in various fields. Authors believe that with the effort of researchers on efficiency improvement gradually, TPL can further highlight its advantages to promote the development of life science, materials engineering, micro-nano optics, and many other fields.
飞秒激光直写 双光子光刻 单光束扫描 多焦点并行 面曝光 体曝光 femtosecond laser direct writing two-photon lithography single-beam scanning multi-focus parallelism pattern projection 3D projection exposure 
光电工程
2023, 50(3): 220133

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!