硅酸盐学报, 2023, 51 (4): 934, 网络出版: 2023-04-15  

微波毫米波用低介电常数低温共烧陶瓷研究进展

Recent Progress on Low-Permittivity LTCC for Microwave/Millimeter Wave Applications
作者单位
1 西安交通大学电信学部电子科学与工程学院, 西安 710049
2 成都宏科电子科技有限公司, 成都 610101
3 河北半导体研究所, 石家庄 050051
4 西安交通大学材料科学与工程学院, 西安 710049
5 西安交通大学电气工程学院, 西安 710049
摘要
在新一代高速无线通信技术推动下, 低温共烧陶瓷技术(LTCC)正处于重大变革时期。采用低介电常数(K)、低损耗、谐振频率温度稳定型LTCC作为高频基板材料, 可以满足无线技术高速率、低延时、高可靠的需求, 是当前热点研究之一。因此商用基板材料的现状和一些候选材料的研究工作被主要评述, 重点对玻璃/陶瓷体系、氧化物助烧体系、氟化物助烧体系、本征低温烧结体系等低K值LTCC材料的组成、结构特征、介电性能、热膨胀系数等具体指标及相应优缺点进行了讨论。同时介绍了一些热门体系的改性工作及其毫米波适用性, 最后对未来低K值LTCC材料的发展进行展望。
Abstract
With the development of a high-speed wireless technology, low-temperature co-fired ceramics (LTCC) technology becomes popular. The high-speed, low-delay and high-reliable wireless transmission could be achieved by using LTCC substrates with a low-permittivity (K), a low-loss and a stable-temperature of resonant frequency, as one of functional materials. This review introduced the current situation of commercial substrate materials and alternative LTCCs reported, i.e., ceramic/glass, oxide-assisted sintering, fluoride-assisted sintering and intrinsic low-sintering ceramic systems. The composition, structural characteristics, dielectric properties, coefficient of thermal expansion of low-K LTCCs, as well as the advantages and disadvantages, were also discussed. Some studies of commercial substrates were further described, and their performances in millimeter-wave application were represented. In addition, the development trend of low-K LTCCs was also proposed.
参考文献

[1] IMANAKA Y. Multilayered low temperature cofired ceramic technology[J]. Ceram Jpn, 2010, 45: 350-362.

[2] SOBOCINSKI M, PUTAALA J, JANTUNEN H. Multilayer low-temperature co-fired ceramic systems incorporating a thick-film printing process[M]. Printed Films, 2012: 134-164.

[3] 王睿, 王悦辉, 周济, 等. 低温共烧陶瓷技术及其应用[J]. 硅酸盐学报, 2007, 35(S1): 125-130.

[4] 杨邦朝, 胡永达. LTCC技术的现状和发展[J]. 电子元件与材料, 2014, 33(11): 5-9.

[5] SEBASTIAN M T, JANTUNEN H. Low loss dielectric materials for LTCC applications: A review[J]. Int Mater Rev, 2013, 53(2): 57-90.

[6] KAMUTZKI F, SCHNEIDER S, BAROWSKI J, et al. Silicate dielectric ceramics for millimetre wave applications[J]. J Eur Ceram Soc, 2021, 41(7): 3879-3894.

[7] SEBASTIAN M T, UBIC R, JANTUNEN H. Low-loss dielectric ceramic materials and their properties[J]. Inter Mater Rev, 2015, 60(7): 392-412.

[8] 李建辉, 丁小聪. LTCC封装技术研究现状与发展趋势[J]. 电子与封装, 2022, 22(3): 030205.

[9] OHSATO H, KIM J S, CHEON C I, et al. Crystallization of indialite/cordierite glass ceramics for millimeter-wave dielectrics[J]. Ceram Int, 2015, 41: S588-S593.

[10] ANDO M, OHSATO H, IGIMI D, et al. Low-temperature sintering of silica-boric acid-doped willemite and microwave dielectric properties[J]. Jpn J Appl Phys, 2015, 54(10S): 10NE03.

[11] OHSATO H, VARGHESE J, KAN A, et al. Volume crystallization and microwave dielectric properties of indialite/cordierite glass by TiO2 addition[J]. Ceram Int, 2021, 47(2): 2735-2742.

[12] OHSATO H, TERADA M. Sintering conditions of cordierite for microwave/millimeterwave dielectrics[J]. IEEE Trans Ultrason Ferroelectr Freq Control, 2008, 55(5): 503-505.

[13] OHSATO H, KIM J S, CHEON C I, et al. Millimeter-wave dielectrics of indialite/cordierite glass ceramics: Estimating Si/Al ordering by volume and covalency of Si/Al octahedron[J]. J Ceram Soc Jpn, 2013, 121(1416): 649-654.

[14] ZHU H, FU R, AGATHOPOULOS S, et al. Crystallization behaviour and properties of BaO-CaO-B2O3-SiO2 glasses and glass-ceramics for LTCC applications[J]. Ceram Int, 2018, 44(9): 10147-10153.

[15] XIA Y, HU Y, REN L, et al. Manufacturing a high performance film of CaO-B2O3-SiO2 glass-ceramic powder with surface modification for LTCC application[J]. J Eur Ceram Soc, 2018, 38(1): 253-261.

[16] VALANT M, SUVOROV D. Glass-free low-temperature cofired ceramics: Calcium germanates, silicates and tellurates[J]. J Eur Ceram Soc, 2004, 24(6): 1715-1719.

[17] WANG S F, LAI B C, HSU Y F, et al. Dielectric properties of CaO-B2O3-SiO2 glass-ceramic systems in the millimeter-wave frequency range of 20-60 GHz[J]. Ceram Int, 2021, 47(16): 22627-22635.

[18] WANG S F, LAI B C, HSU Y F, et al. Physical and structural characteristics of sol-gel derived CaO-B2O3-SiO2 glass-ceramics and their dielectric properties in the 5G millimeter-wave bands[J]. Ceram Int, 2022, 48(7): 9030-9037.

[19] VENKATESWARAN C, SREEMOOLANADHAN H, VAISH R. Lithium aluminosilicate (LAS) glass-ceramics: A review of recent progress[J]. Int Mater Rev, 2021, 67(6): 620-657.

[20] LI B, LI W, ZHENG J. Effect of SiO2 content on the sintering kinetics, microstructures and properties of BaO-Al2O3-B2O3-SiO2 glass-ceramics for LTCC application[J]. J Alloys Compd, 2017, 725: 1091-1097.

[21] LIN S E, CHENG Y R, WEI W C J. BaO-B2O3-SiO2-Al2O3 sealing glass for intermediate temperature solid oxide fuel cell[J]. J Non-Cryst Solids, 2012, 358(2): 174-181.

[22] SZWAGIERCZAK D, SYNKIEWICZ B, KULAWIK J. Low dielectric constant composites based on B2O3 and SiO2 rich glasses, cordierite and mullite[J]. Ceram Int, 2018, 44(12): 14495-14501.

[23] SONG M E, KIM J S, JOUNG M R, et al. Synthesis and microwave dielectric properties of MgSiO3 ceramics[J]. J Am Ceram Soc, 2008, 91(8): 2747-2750.

[24] HE L, XIA G, YANG D A. Synthesis and characterization of LTCC composites based on the spodumene/anorthite crystallizable glass[J]. J Alloys Compd, 2013, 556: 12-19.

[25] GUO J F, LIN Y X, ZHOU Z W, et al. Design and preparation of BaO-Al2O3-SiO2-B2O3/quartz LTCC composites with tailored coefficient of thermal expansion[J]. Ceram Int, 2022, 48(9): 12065-12073.

[26] XIANG L, ZHONG C, QIN T, et al. Densification, flexural strength and dielectric properties of CaO-MgO-ZnO-SiO2/Al2O3 glass ceramics for LTCC applications[J]. Ceram Int, 2021, 47(20): 28904-28912.

[27] WANG M, ZHONG C, QIN T, et al. Effect of LMZBS glass on the microstructure and microwave dielectric properties of monocelsian ceramics[J]. Ceram Int, 2020, 46(8): 12088-12095.

[28] LIU D, ZHONG C, QIN T, et al. Low-temperature sintering of CaMgSi2O6-KBS composites with ultralow dielectric constant [J]. Ceram Int, 2020, 46(11): 17818-17824.

[29] SHANG Y, ZHONG C, XIONG H, et al. Ultralow-permittivity glass /Al2O3 composite for LTCC applications[J]. Ceram Int, 2019, 45(11): 13711-13718.

[30] QIN T, ZHONG C, QIN Y, et al. Low-temperature sintering mechanism and microwave dielectric properties of ZnAl2O4-LMZBS composites[J]. J Alloys Compd, 2019, 797: 744-753.

[31] KESHAVARZ M, EBADZADEH T, BANIJAMALI S. Preparation of forsterite/MBS (MgO-B2O3-SiO2) glass-ceramic composites via conventional and microwave assisted sintering routes for LTCC application[J]. Ceram Int, 2017, 43(12): 9259-9266.

[32] YUAN L, LIU B, SHEN N, et al. Synthesis and properties of borosilicate/AlN composite for low temperature co-fired ceramics application[J]. J Alloys Compd, 2014, 593: 34-40.

[33] DOU G, GUO M, LI Y, et al. The effect of LMBS glass on the microwave dielectric properties of the Mg3B2O6 for LTCC[J]. J Mater Sci: Mater El, 2015, 26(6): 4207-4211.

[34] OHASTO H, TSUNOOKA T, ANDO M, et al. Millimeter-wave dielectric ceramics of alumina and forsterite with high quality factor and low dielectric constant[J]. J Kore Ceram Soc, 2003, 40(4): 350-353.

[35] 姚义俊, 丘泰, 蒋晓龙, 等. 改性氧化铝陶瓷的抗弯强度和显微结构[J]. 电子元件与材料, 2009, 28(6): 1-3.

[36] 孟献丰, 朱宏. AlN基板材料研究进展[J]. 材料导报, 2003, 17(3): 35-37.

[37] THORP J S, EVANS D, AL-NAIEF M, et al. The dielectric properties of aluminium nitride substrates for microelectronics packaging[J]. J Mater Sci, 1990, 25(12): 4965-4971.

[38] FANG Y, LI L, XIAO Q, et al. Preparation and microwave dielectric properties of cristobalite ceramics[J]. Ceram Int, 2012, 38(6): 4511-4515.

[39] LI L, FANG Y, XIAO Q, et al. Microwave dielectric properties of fused silica prepared by different approaches[J]. Int J App Ceram Tech, 2014, 11(1): 193-199.

[40] CHEN G, LIU Z, MA M, et al. Composites of Li-Al-B-Si-O glass and β-Al2O3 for LTCC-silicon heterogeneous integration applications[J]. Ceram Int, 2018, 44: S141-S144.

[41] SEBASTIAN M T. Dielectric materials for wireless communication[M]. Elsevier Sci, 2008.

[42] RENJINI S N, THOMAS S, SEBASTIAN M T, et al. Microwave dielectric properties and low temperature sintering of Sm2Si2O7 ceramic for substrate applications[J]. Int J App Ceram Tech, 2009, 6(2): 286-294.

[43] SASIKALA T S, PAVITHRAN C, SEBASTIAN M T. Effect of lithium magnesium zinc borosilicate glass addition on densification temperature and dielectric properties of Mg2SiO4 ceramics[J]. J Mater Sci: Mater El, 2009, 21(2): 141-144.

[44] GEORGE S, SAJITH V K, SEBASTIAN M T, et al. Synthesis and microwave dielectric properties of Li2MgSiO4 ceramics prepared using citrate gel route[J]. J Adv Dielectr, 2012, 1(2): 209-213.

[45] MANU K, SEBASTIAN M T. Tape casting of low permittivity Wesselsite-glass composite for LTCC based microwave applications[J]. Ceram Int, 2016, 42(1): 1210-1216.

[46] CHEN H W, SU H, ZHANG H W, et al. Low-temperature sintering and microwave dielectric properties of (Zn1-xCox)2SiO4 ceramics[J]. Ceram Int, 2014, 40(9): 14655-14659.

[47] ZUO H, TANG X, ZHANG H, et al. Low-dielectric-constant LiAlO2 ceramics combined with LBSCA glass for LTCC applications[J]. Ceram Int, 2017, 43(12): 8951-8955.

[48] JO Y H, KANG M S, CHUNG K W, et al. Chemical stability and dielectric properties of RO-La2O3-B2O3 (R=Ca, Mg, Zn)-based ceramics[J]. Mater Res Bull, 2008, 43(2): 361-369.

[49] WANG F, ZHANG W, CHEN X, et al. Synthesis and characterization of low CTE value La2O3-B2O3-CaO-P2O5 glass/cordierite composites for LTCC application[J]. Ceram Int, 2019, 45(6): 7203-7209.

[50] WANG F, ZHANG W, CHEN X, et al. Low temperature sintering and characterization of La2O3-B2O3-CaO glass-ceramic/LaBO3 composites for LTCC application[J]. J Eur Ceram Soc, 2020, 40(6): 2382-2389.

[51] CHEN X, WANG F, GUAN Y, et al. Phase evolution and dielectric properties of La2O3-B2O3-ZnO glass-ceramics/Al2O3 composites for LTCC substrates at high frequencies[J]. J Mater Sci: Mater El, 2022, 33(15): 12436-12446.

[52] XI J, LU B, CHEN J, et al. Ultralow sintering temperature and permittivity with excellent thermal stability in novel borate glass-ceramics[J]. J Non-Cryst Solids, 2019, 521: 119527.

[53] XI J, CHEN G, LIU F, et al. Synthesis, microstructure and characterization of ultra-low permittivity CuO-ZnO-B2O3-Li2O glass/Al2O3 composites for ULTCC application[J]. Ceram Int, 2019, 45(18): 24431-24436.

[54] GUI L, YANG H, ZHAO Q, et al. Synthesis of low temperature firing scheelite-type BaWO4 microwave dielectric ceramics with high performances[J]. Ceram Int, 2022, 48(1): 1360-1365.

[55] WU P, YANG H, YANG H, et al. Synthesis of a low-firing BaSi2O5 microwave dielectric ceramics with low dielectric constant[J]. Ceram Int, 2022, 48(12): 17289-17297.

[56] KIM M H, LIM J B, KIM J C, et al. Synthesis of BaCu(B2O5) ceramics and their effect on the sintering temperature and microwave dielectric properties of Ba(Zn1/3Nb2/3)O3 Ceramics[J]. J Am ceram Soc, 2006, 89(10): 3124-3128.

[57] ROSE A, MASIN B, SREEMOOLANADHAN H, et al. Synthesis and microwave dielectric studies of pure Li2MgSiO4 and B2O3, MgF2, WO3 added Li2MgSiO4 for substrate applications[J]. Appl Surf Sci, 2018, 449: 96-104.

[58] MA X H, KWEON S H, IM M, et al. Low-temperature sintering and microwave dielectric properties of B2O3-added ZnO-deficient Zn2GeO4 ceramics for advanced substrate application[J]. J Eur Ceram Soc, 2018, 38(14): 4682-4688.

[59] WENG Z, AMINIRASTABI H, XIONG Z, et al. Effects of the Bi2O3-SiO2 addition on the sintering behavior and microwave dielectric properties of Zn1.8SiO3.8 ceramics[J]. J Alloys Compd, 2017, 725: 1063-1068.

[60] ZHANG P, LIAO J, ZHAO Y, et al. Microstructures and dielectric properties of low permittivity SrCuSi4O10-Bi2O3 ceramics for LTCC applications[J]. J Mater Sci: Mater El, 2016, 28(6): 4946-4950.

[61] SONG X Q, LU W Z, LOU Y H, et al. Synthesis, lattice energy and microwave dielectric properties of BaCu2-xCoxSi2O7 ceramics[J]. J Eur Ceram Soc, 2020, 40(8): 3035-3041.

[62] FU Z, MA J, LIU P, et al. Crystal structure and microwave dielectric properties of middle-temperature-sintered Mg2Si(1-x)VxO4 ceramics[J]. J Electroceram, 2016, 36(1-4): 82-86.

[63] KIM JS, SONG ME, JOUNG MR, et al. Effect of B2O3 addition on the sintering temperature and microwave dielectric properties of Zn2SiO4 ceramics[J]. J Eur Ceram Soc, 2010, 30(2): 375-379.

[64] LV Y, ZUO R. Effect of the B2O3 addition on the sintering behavior and microwave dielectric properties of Ba3(VO4)2-Zn1.87SiO3.87 composite ceramics[J]. Ceram Int, 2013, 39(3): 2545-2550.

[65] XIANG H, LI C, JANTUNEN H, et al. Ultralow loss CaMgGeO4 microwave dielectric ceramic and its chemical compatibility with silver electrodes for low-temperature cofired ceramic applications[J]. ACS Sustain Chem Eng, 2018, 6(5): 6458-6466.

[66] WENG Z, HAN Z, XIAO F, et al. Low temperature sintering and microwave dielectric properties of Zn1.8SiO3.8 ceramics with BaCu(B2O5) additive for LTCC applications[J]. Ceram Int, 2018, 44(12): 14145-14150.

[67] OUYANG L, WANG W, FAN H, et al. Sintering behavior and microwave performance of CaSiO3 ceramics doped with BaCu(B2O5) for LTCC applications[J]. Ceram Int, 2019, 45(15): 18937-18942.

[68] ZHAN Y, LI L, DU M. The simulation for a high-efficiency millimeter wave microstrip antenna by low dielectric loss and wide temperature stable lithium-based microwave dielectric ceramics for LTCC applications[J]. Ceram Int, 2021, 47(19): 27462-27468.

[69] LAN X K, LI J, ZOU Z Y, et al. Lattice structure analysis and optimised microwave dielectric properties of LiAl1-x(Zn0.5Si0.5)xO2 solid solutions[J]. J Eur Ceram Soc, 2019, 39(7): 2360-2364.

[70] CHEN C X, WU S P, FAN Y X. Synthesis and microwave dielectric properties of B2O3-doped Mg2GeO4 ceramics[J]. J Alloys Compd, 2013, 578: 153-156.

[71] GEORGE S, SEBASTIAN M T, RAMAN S, et al. Novel low loss, low permittivity glass-ceramic composites for LTCC applications[J]. Int J Appl Ceram Tech, 2011, 8(1): 172-179.

[72] QIN J, LIU Z, MA M, et al. Structure and microwave dielectric properties of gillespite-type ACuSi4O10 (A=Ca, Sr, Ba) ceramics and quantitative prediction of the Q×f value via machine learning[J]. ACS Appl. Mater, 2021, 13(15): 17817-17826.

[73] SONG X Q, LEI W, WANG F, et al. Phase evolution, crystal structure, and microwave dielectric properties of gillespite-type ceramics[J]. J Am Ceram Soc, 2020, 104(4): 1740-1749.

[74] DOU G, ZHOU D, GONG S, et al. Low temperature sintering and microwave dielectric properties of Li2ZnSiO4 ceramics with ZB glass[J]. J Mater Sci: Mater El, 2012, 24(5): 1601-1607.

[75] LI C, XIANG H, XU M, et al. Li2AGeO4 (A=Zn, Mg): Two novel low-permittivity microwave dielectric ceramics with olivine structure[J]. J Eur Ceram Soc, 2018, 38(4): 1524-1528.

[76] XING Z, YIN C, YU Z, et al. Synthesis of LiBGeO4 using compositional design and its dielectric behaviors at RF and microwave frequencies[J]. Ceram Int, 2020, 46(14): 22460-22465.

[77] YIN C, XIANG H, LI C, et al. Low-temperature sintering and thermal stability of Li2GeO3-based microwave dielectric ceramics with low permittivity[J]. J Am Ceram Soc, 2018, 101(10): 4608-4614.

[78] LEI W, ZOU Z Y, CHEN Z H, et al. Controllable τf value of barium silicate microwave dielectric ceramics with different Ba/Si ratios[J]. J Am Ceram Soc, 2018, 101(1): 25-30.

[79] ZHOU X, ZHOU H, HU S, et al. Sintering behavior and microwave dielectric properties of low-permittivity SrMgSi2O6 ceramic[J]. J Electron Mater, 2020, 49(10): 5989-5993.

[80] TANG Y, X U M, DUAN L, et al. Structure, microwave dielectric properties, and infrared reflectivity spectrum of olivine type Ca2GeO4 ceramic[J]. J Eur Ceram Soc, 2019, 39(7): 2354-2359.

[81] KAGOMIYA I, SUZUKI I, OHSATO H. Microwave dielectric properties of (Ca1-xSrx)SiO3 ring silicate solid solutions[J]. Jpn J Appl Physs, 2009, 48(9): 09KE02.

[82] OHSATO H, TSUNOOKA T, SUGIYAMA T, et al. Forsterite ceramics for millimeterwave dielectrics[J]. J Electroceram, 2006, 17(2-4): 445-450.

[83] FANG W, CHENG K, XIANG H, et al. Phase composition and microwave dielectric properties of low permittivity AGeO3 (A?偋c=?偋cMg, Zn) ceramics[J]. J Alloys Compd, 2019, 799: 495-500.

[84] WU S, MA Q. Synthesis, characterization and microwave dielectric properties of Zn2GeO4 ceramics[J]. J Alloys Compd, 2013, 567: 40-46.

[85] YANG Z, TANG Y, LI J, et al. Crystal structure, Raman spectra and microwave dielectric properties of novel low-temperature cofired ceramic Li4GeO4[J]. J Alloys Compd, 2021, 867: 159059.

[86] ZHOU H, HUANG J, TAN X, et al. Microwave dielectric properties of low-permittivity CaMgSiO4 ceramic[J]. J Mater Sci: Mater El, 2017, 28(20): 15258-15262.

[87] SU C, AO L, ZHANG Z, et al. Crystal structure, Raman spectra and microwave dielectric properties of novel temperature-stable LiYbSiO4 ceramics[J]. Ceram Int, 2020, 46(12): 19996-20003.

[88] CHEN X, LI H, ZHANG P, et al. Phase composition, microstructure, and microwave dielectric properties of CaMnSi2O6 ceramics[J]. Ceram Int, 2021, 47(3): 4083-4089.

[89] DU Q, TANG Y, LI J, et al. A low-εr and high-Q microwave dielectric ceramic Li2SrSiO4 with abnormally low sintering temperature[J]. J Eur Ceram Soc, 2021, 41(15): 7678-7682.

[90] LI H, TANG B, LI Y, et al. Relationships between Sn substitution for Ti and microwave dielectric properties of Mg2(Ti1-xSnx)O4 ceramics system[J]. J Mater Sci: Mater El, 2014, 26(1): 571-577.

[91] LI C, YIN C, CHEN J, et al. Crystal structure and dielectric properties of germanate melilites Ba2MGe2O7 (M?偋c=?偋cMg and Zn) with low permittivity[J]. J Eur Ceram Soc, 2018, 38(15): 5246-5251.

[92] SUNNY A, LAZER K A, MANU K M, et al. Effect of glass fluxing on densification and microwave dielectric properties of LiInSiO4 ceramic[J]. J Alloys Compd, 2013, 552: 83-87.

[93] DU C, GUO H H, ZHOU D, et al. Dielectric resonator antennas based on high quality factor MgAl2O4 transparent dielectric ceramics[J]. J Mater Chem C, 2020, 8(42): 14880-14885.

[94] LAN X K, LI J, LI J P, et al. Phase evolution and microwave dielectric properties of novel LiAl5-xZnxO8-0.5x-based (0≤x≤0.5) ceramics[J]. J Am Ceram Soc, 2019, 103(2): 1105-1112.

[95] WU Y, HU C C, LIU B, et al. Crystal structure, vibrational spectroscopy, and microwave dielectric properties of CaAl4O7 ceramics with low permittivity[J]. J Mater Sci: Mater El, 2020, 31(6): 4520-4526.

[96] YIN C, TANG Y, CHEN J, et al. Two low-permittivity melilite ceramics in the SrO-MO-GeO2 (M=Mg, Zn) system and their temperature stability through compositional modifications[J]. J Eur Ceram Soc, 2020, 40(4): 1186-1190.

[97] LUO H, FANG L, XIANG H, et al. Two novel low-firing germanates Li2MGe3O8 (M=Ni, Co) microwave dielectric ceramics with spinel structure[J]. Ceram Int, 2017, 43(1): 1622-1627.

[98] JOSEPH T, SEBASTIAN M T. Microwave dielectric properties of (Sr1-xAx)2(Zn1-xBx)Si2O7 ceramics (A=Ca, Ba and B=Co, Mg, Mn, Ni)[J]. J Am Ceram Soc, 2010, 93(1): 147-154.

[99] FU Z, LIU P, MA J, et al. Novel series of ultra-low loss microwave dielectric ceramics: Li2Mg3BO6 (B=Ti, Sn, Zr)[J]. J Eur Ceram Soc, 2016, 36(3): 625-629.

[100] LIU B, HU C C, HUANG Y H, et al. Crystal structure, infrared reflectivity spectra and microwave dielectric properties of CaAl2O4 ceramics with low permittivity[J]. J Alloys Compd, 2019, 791: 1033-1037.

[101] ZHAI Y, TANG Y, LI J, et al. Structure, Raman spectra and properties of two low-εr microwave dielectric ceramics Ca3B2Ge3O12 (B=Al, Ga)[J]. Ceram Int, 2020, 46(18): 28710-28715.

[102] MA J, CHEN J, TANG Y, et al. Chemical bond and microwave dielectric properties of two novel low-εr AGa4O7 (A?偆f=?偆fCa, Sr) ceramics[J]. J Eur Ceram Soc, 2022, 42(2): 478-484.

[103] LIU B, SHA K, ZHOU M F, et al. Novel low-εr MGa2O4 (M=Ca, Sr) microwave dielectric ceramics for 5 G antenna applications at the Sub-6 GHz band[J]. J Eur Ceram Soc, 2021, 41(10): 5170-5175.

[104] LI J, TANG Y, ZHANG Z, et al. Two novel garnet Sr3B2Ge3O12 (B= Yb, Ho) microwave dielectric ceramics with low permittivity and high Q[J]. J Eur Ceram Soc, 2021, 41(2): 1317-1323.

[105] SONG X Q, LEI W, XIE M Q, et al. Sintering behaviour, lattice energy and microwave dielectric properties of melilite-type BaCo2Si2O7 ceramics[J]. Mater Res Express, 2020, 6(12): 126322(9pp).

[106] LIN Q, SONG K, LIU B, et al. Vibrational spectroscopy and microwave dielectric properties of AY2Si3O10 (A=Sr, Ba) ceramics for 5G applications[J]. Ceram Int, 2020, 46(1): 1171-1177.

[107] CHENG K, TANG Y, XIANG H, et al. Two novel low permittivity microwave dielectric ceramics Li2TiMO5 (M=Ge, Si) with abnormally positive τf [J]. J Eur Ceram Soc, 2019, 39(8): 2680-2684.

[108] LI F, TANG Y, LI J, et al. Effect of A-site cation on crystal structure and microwave dielectric properties of AGe4O9 (A=Ba, Sr) ceramics[J]. J Eur Ceram Soc, 2021, 41(7): 4153-4159.

[109] LU X, DU Z, QUAN B, et al. Structural dependence of the microwave dielectric properties of Cr3+-substituted ZnGa2O4 spinel ceramics: Crystal distortion and vibration mode studies[J]. J Mater Chem C, 2019, 7(27): 8261-8268.

[110] DU K, SONG X Q, LI J, et al. Phase compositions and microwave dielectric properties of Sn-deficient Ca2SnO4 ceramics[J]. J Alloys Compd, 2019, 802: 488-492.

[111] CHEN Y C, LIOU J M, WENG M Z, et al. Improvement microwave dielectric properties of Zn2SnO4 ceramics by substituting Sn4+ with Ti4+[J]. Ceram Int, 2014, 40(7): 10337-10342.

[112] XIANG H, FANG L, FANG W, et al. A novel low-firing microwave dielectric ceramic Li2ZnGe3O8 with cubic spinel structure[J]. J Eur Ceram Soc, 2017, 37(2): 625-629.

[113] AO L, TANG Y, LI J, et al. Structure characterization and microwave dielectric properties of LiGa5O8 ceramic with low-εr and low loss[J]. J Eur Ceram Soc, 2020, 40(15): 5498-5503.

[114] DU C, FU M S, ZHOU D, et al. Dielectric resonator antenna with Y3Al5O12 transparent dielectric ceramics for 5G millimeter-wave applications[J]. J Am Ceram Soc, 2021, 104(9): 4659-4668.

[115] SU C, AO L, ZHAI Y, et al. Novel low-permittivity microwave dielectric ceramics in garnet-type Ca4ZrGe3O12[J]. Mater Lett, 2020, 275: 128149.

[116] TANG Y, ZHANG Z, LI J, et al. A3Y2Ge3O12 (A=Ca, Mg): Two novel microwave dielectric ceramics with contrasting τf and Q×f[J]. J Eur Ceram Soc, 2020, 40(12): 3989-3995.

[117] ROSHNI S B, ARUN S, SEBASTIAN M T, et al. Low κ Mg2SiO4 ceramic tapes and their role as screen printed microstrip patch antenna substrates[J]. Mater Sci Eng B, 2021, 264, Doi: 10.1016/j.mseb.2020.114947.

[118] LAI Y, TANG X, HUANG X, et al. Phase composition, crystal structure and microwave dielectric properties of Mg2-xCuxSiO4 ceramics[J]. J Eur Ceram Soc, 2018, 38(4): 1508-1516.

[119] GEORGE S, ANJANA P S, DEEPU V N, et al. Low-temperature sintering and microwave dielectric properties of Li2MgSiO4 ceramics[J]. J Am Ceram Soc, 2009, 92(6): 1244-1249.

[120] LAI Y, ZENG Y, HAN J, et al. Structure dependence of microwave dielectric properties in Zn2-xSiO4-x-xCuO ceramics[J]. J Eur Ceram Soc, 2021, 41(4): 2602-2609.

[121] SZWAGIERCZAK D, SYNKIEWICZ-MUSIALSKA B, KULAWIK J, et al. LTCC and bulk Zn4B6O13-Zn2SiO4 composites for submillimeter wave applications[J]. Materials, 2021, 14(4): 1014.

[122] ZHANG J, YUE Z, LUO Y, et al. Novel low-firing forsterite-based microwave dielectric for LTCC Applications[J]. J Am Ceram Soc, 2016, 99(4): 1122-1124.

[123] LAI Y, SU H, WANG G, et al. Low-temperature sintering of microwave ceramics with high Q×f values through LiF addition[J]. J Am Ceram Soc, 2019, 102(4): 1893-1903.

[124] SONG X Q, LEI W, ZHOU Y Y, et al. Ultra-low fired fluoride composite microwave dielectric ceramics and their application for BaCuSi2O6-based LTCC[J]. J Am Ceram Soc, 2019, 103(2): 1140-1148.

[125] ZUO R, ZHANG J, SONG J, et al. Liquid-phase sintering, microstructural evolution, and microwave dielectric properties of Li2Mg3SnO6-LiF ceramics[J]. J Am Ceram Soc, 2018, 101(2): 569-576.

[126] SONG X Q, DU K, ZOU Z Y, et al. Temperature-stable BaAl2Si2O8-Ba5Si8O21-based low-permittivity microwave dielectric ceramics for LTCC applications[J]. Ceram Int, 2017, 43(16): 14453-14456.

[127] ZHANG P, WU S, ZHAO Y, et al. Effects of LiF on sintering characteristics and dielectric properties of low-loss SrCuSi4O10 ceramics for LTCC applications[J]. Mater Chem Phys, 2019, 222: 246-250.

[128] WANG D, LI L, JIANG J, et al. Cold sintering of microwave dielectric ceramics and devices[J]. J Mater Res, 2021, 36(2): 333-349.

[129] 张高群, 汪宏. 超低温烧结微波介质陶瓷研究进展[J]. 硅酸盐学报, 2017, 45(9): 1256-1264.

[130] ZHOU D, PANG L X, WANG D W, et al. Novel water-assisting low firing MoO3 microwave dielectric ceramics[J]. J Eur Ceram Soc, 2019, 39(7): 2374-2378.

[131] SEBASTIAN M T, WANG H, JANTUNEN H. Low temperature co-fired ceramics with ultra-low sintering temperature: A review[J]. Curr Opin Solid State Mater Sci. 2016, 20(3): 151-170.

[132] YOON S H, KIM D W, CHO S Y, et al. Investigation of the relations between structure and microwave dielectric properties of divalent metal tungstate compounds[J]. J Eur Ceram Soc, 2006, 26(10/11): 2051-2054.

[133] ZHOU D, RANDALL C A, PANG L X, et al. Microwave dielectric properties of Li2WO4 ceramic with ultra-low sintering temperature[J]. J Am Ceram Soc, 2011, 94(2): 348-350.

[134] ZHOU H, WANG H, LI K, et al. Microwave dielectric properties of low temperature firing (Li1/2Nd1/2)WO4 ceramic[J]. J Mater Sci: Mater El, 2009, 21(3): 252-255.

[135] KIM J S, LEE J C, CHEON C I, et al. Crystal structures and low temperature cofiring ceramic property of (1-x)(Li, RE)W2O8-xBaWO4 Ceramics (RE=Y, Yb)[J]. Jpn J Appl Phys, 2006, 45(9B): 7397-7400.

[136] YUAN X, XUE X, WANG H. Preparation of ultra-low temperature sintering ceramics with ultralow dielectric loss in Na2O-WO3 binary system[J]. J Am Ceram Soc, 2019, 102(7): 4014-4020.

[137] ZHOU D, RANDALL C A, WANG H, et al. Microwave dielectric ceramics in Li2O-Bi2O3-MoO3 system with ultra-low sintering temperatures [J]. J Am Ceram Soc, 2010, 93(4): 1096-1100.

[138] ZHOU D, RANDALL C A, PANG L X, et al. Microwave dielectric properties of Li2(M2+)2Mo3O12 and Li3(M3+)Mo3O12 (M=Zn, Ca, Al, and In) lyonsite-related-type ceramics with ultra-low sintering Temperatures[J]. J Am Ceram Soc, 2011, 94(3): 802-805.

[139] ZHOU D, PANG L X, QI Z M, et al. Novel ultra-low temperature co-fired microwave dielectric ceramic at 400 degrees and its chemical compatibility with base metal[J]. Sci Rep, 2014, 4: 5980.

[140] PANG L X, ZHOU D, LIU W G, et al. Low-temperature sintering and microwave dielectric properties of CaMoO4-Based temperature Stable LTCC Material[J]. J Am Ceram Soc, 2014, 97(7): 2032-2034.

[141] ZHANG G Q, WANG H, GUO J, et al. Ultra-low sintering Temperature microwave dielectric ceramics based on Na2O-MoO3 binary system[J]. J Am Ceram Soc, 2015, 98(2): 528-533.

[142] JOSEPH N, VARGHESE J, SIPONKOSKI T, et al. Glass-free CuMoO4 ceramic with excellent dielectric and thermal properties for ultralow temperature cofired ceramic applications[J]. ACS Sustain Chem Eng, 2016, 4(10): 5632-5639.

[143] PANG L X, ZHOU D, WANG D W, et al. Temperature stable K0.5(Nd1-xBix)0.5MoO4 microwave dielectrics ceramics with ultra-low sintering temperature[J]. J Am Ceram Soc, 2018, 101(5): 1806-1810.

[144] ZHOU D, PANG L X, WANG D W, et al. Crystal structure, impedance and broadband dielectric spectra of ordered scheelite-structured Bi(Sc1/3Mo2/3)O4 ceramic[J]. J Eur Ceram Soc, 2018, 38(4): 1556-1561.

[145] HU S, ZHOU H, ZHOU X, et al. Phase structure, sintering behaviour and microwave dielectric properties of Ln2MoO6 (Ln=La and Y) ceramics[J]. Ceram Int, 2020, 46(15): 24552-24556.

[146] LYU X, LI Z, JIN J, et al. Sintering behavior, structure, and microwave properties of novel Li2xCu1-xMoO4 ceramics[J]. Ceram Int, 2022, 48(12): 17225-17233.

[147] GUO Y B, DU K, YIN C Z, et al. Phase transition and microwave dielectric properties of Al2-xScxMo3O12 solid solutions[J]. J Alloys Compd, 2022, 910: 164940.

[148] FENG C, ZHOU X, TAO B, et al. Crystal structure and enhanced microwave dielectric properties of the Ce2[Zr1-x(Al1/2Ta1/2)x]3(MoO4)9 ceramics at microwave frequency[J]. J Adv Ceram, 2022, 11(3): 392-402.

[149] BIAN W, ZHOU G, DONG Y, et al. Structural analysis and microwave dielectric properties of a novel Li2Mg2Mo3O12 ceramic with ultra-low sintering temperature[J]. Ceram Int, 2021, 47(5): 7081-7087.

[150] REN J, BI K, FU X, et al. Novel Al2Mo3O12-based temperature-stable microwave dielectric ceramics for LTCC applications[J]. J Mater Chem C, 2018, 6(42): 11465-11470.

[151] BAO J, DU J, LIU L, et al. A new type of microwave dielectric ceramic based on K2O-SrO-P2O5 composition with high quality factor and low sintering temperature[J]. Ceram Int, 2022, 48(1): 784-794.

[152] CHEN X, LI H, ZHANG P, et al. Microwave dielectric properties of Co2P2O7 ceramics[J]. Ceram Int, 2021, 47(2): 1980-1985.

[153] CHEN X Q, LI H, ZHANG P C, et al. A low-permittivity microwave dielectric ceramic BaZnP2O7 and its performance modification[J]. J Am Ceram Soc, 2021, 104(10): 5214-5223.

[154] GUO T, LI Y, WAHYUDI O, et al. Microwave dielectric properties of AZn2(PO4)2 (A=Sr, Ba) ceramics[J]. Ferroelectrics, 2016, 492(1): 91-102.

[155] SHI F, XIAO E C. Sintering behavior, crystal structures, phonon characteristics and dielectric properties of LiZnPO4 microwave dielectric ceramics[J]. Mater Chem Phys, 2021, 259: 124139.

[156] THOMAS D, SEBASTIAN M T. Temperature-compensated LiMgPO4: A new glass-free low-temperature cofired ceramic[J]. J Am Ceram Soc, 2010, 93(11): 3828-3831.

[157] PIRVARAM A, TAHERI-NASSAJ E, ARMAKI H T, et al. Effects of Mg2+ substitution on the structure, microstructure, and microwave dielectric properties of CaV2O6 ceramic[J]. J Electron Mater, 2022, 51(4): 1498-1504.

[158] YAO G, LI Y, YAN J, et al. Structure and microwave dielectric properties of NaSr4V5O17 ceramics for LTCC applications[J]. Ceram Int, 2021, 47(12): 17147-17152.

[159] HUANG C L, CHU T M, TSAI M H. A low-loss, low temperature sintering dielectric using Ba1-xSrxMg2(VO4)2 ceramics and its applications at microwave frequencies[J]. Mater Sci Eng B, 2021, 268: 115114.

[160] HU H, WANG Y, CAI C, et al. BaMnV2O7: A novel microwave dielectric ceramic for LTCC applications[J]. Ceram Int, 2021, 47(22): 31506-31511.

[161] HSU T H, HUANG C L. Low-loss microwave dielectric of novel Li1-2xMxVO3 (M=Mg, Zn) (x=0-0.09) ceramics for ULTCC applications[J]. J Eur Ceram Soc, 2021, 41(12): 5918-5923.

[162] LUO H, FANG W, FANG L, et al. Microwave dielectric properties of novel glass-free low temperature firing ACa2Mg2V3O12(A=Li, K) ceramics[J]. Ceram Int, 2016, 42(8): 10506-10510.

[163] ZHOU D, PANG L X, WANG D W, et al. BiVO4 based high k microwave dielectric materials: A review[J]. J Mater Chem C, 2018, 6(35): 9290-9313.

[164] YAO P, DENG Y, LI B. Sintering characteristic, microstructure and microwave dielectric properties of the borax-added Sr3(VO4)2 ceramics[J]. Ceram Int, 2021, 47(2): 2202-2207.

[165] YIN C, LI C, YANG G, et al. NaCa4V5O17: A low-firing microwave dielectric ceramic with low permittivity and chemical compatibility with silver for LTCC applications[J]. J Eur Ceram Soc, 2020, 40(2): 386-390.

[166] PEI C, LI Y, TAN J, et al. Temperature stable (1-x)NaCa4V5O17-xBaV2O6 microwave dielectric ceramics for ULTCC applications[J]. Ceram Int, 2020, 46(17): 27579-27583.

[167] ZHOU D, PANG L X, WANG D W, et al. High quality factor, ultralow sintering temperature Li6B4O9 microwave dielectric ceramics with ultralow density for antenna substrates[J]. ACS Sustain Chem Eng, 2018, 6(8): 11138-11143.

[168] DOLER U, KRMANC M M, SUVOROV D. The synthesis and microwave dielectric properties of Mg3B2O6 and Mg2B2O5 ceramics[J]. J Eur Ceram Soc, 2010, 30(2): 413-418.

[169] OHASHI M, OGAWA H, KAN A, et al. Microwave dielectric properties of low-temperature sintered Li3AlB2O6 ceramic[J]. J Eur Ceram Soc, 2005, 25(12): 2877-2881.

[170] GU Y J, DING X B, HU W, et al. Effect of Mg/B ratio and Sr2+ substitution for Mg2+ on the sintering, phase composition and microwave dielectric properties of Mg3B2O6 ceramics[J]. Ceram Int, 2020, 46(16): 25888-25894.

[171] SZWAGIERCZAK D, SYNKIEWICZ-MUSIALSKA B, KULAWIK J, et al. Low temperature sintering of Zn4B6O13 based substrates, their microstructure and dielectric properties up to the THz range[J]. J Alloys Compd, 2020, 819: 153025.

[172] WANG K, ZHOU H, ZHOU X, et al. High relative permittivity Bi4B2+xO9+3/2 (x=1.5, 2.0, 2.5, 3.0) microwave ceramics for ULTCC technology[J]. Ceram Int, 2020, 46(9): 13841-13847.

[173] YANG H, ZHANG S, WEN Q, et al. Synthesis of CaAl2xB2O4+3x: Novel microwave dielectric ceramics with low permittivity and low loss[J]. J Eur Ceram Soc, 2021, 41(4): 2596-2601.

[174] 谢先德, 查福标. 硼酸盐矿物物理学[M]. 地震出版社, 1993.

王威, 张玲, 吴亚光, 乔峰, 史忠旗, 刘文凤, 周迪. 微波毫米波用低介电常数低温共烧陶瓷研究进展[J]. 硅酸盐学报, 2023, 51(4): 934. WANG Wei, ZHANG Ling, WU Yaguang, QIAO Feng, SHI Zhongqi, LIU Wenfeng, ZHOU Di. Recent Progress on Low-Permittivity LTCC for Microwave/Millimeter Wave Applications[J]. Journal of the Chinese Ceramic Society, 2023, 51(4): 934.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!