人工晶体学报, 2023, 52 (2): 307, 网络出版: 2023-03-18  

异价阳离子替代实现的金属卤化物CsCdCl3的明亮宽带绿色发光

Bright Broadband Green Photoluminescence of CsCdCl3 Metal Halides Achieved by Heterovalent Cation Substitution
作者单位
1 中北大学化学工程与技术学院,太原 038507
2 德州学院化学化工学院,德州 253023
3 北京大学分析测试中心,北京 100871
4 中国科学院理化技术研究所,人工晶体研究发展中心,中国科学院功能晶体与激光技术重点实验室,北京 100190
摘要
全无机金属卤化物灵活多变的结构及优异的发光性能使其在固态光电子领域显示出重要的应用前景。本研究采用异价阳离子取代策略,用三价锑离子部分取代CsCdCl3中的二价镉离子,促进自陷激子的产生,使CsCdCl3∶Sb3+产生了明亮的宽带绿色发光,中心波长为530 nm。机理研究结果表明,CsCdCl3∶Sb3+ 中相邻SbCl6八面体被孤立,形成了低维电子构型,促进了Sb3+ 局域化,实现了量子效率最高为95.5%的高效发光。此外,尽管CsCdCl3和RbCdCl3均属于ACdCl3(A为碱金属家族),但它们的晶体结构明显不同。RbCdCl3属于正交晶系,空间群为Pnma;CsCdCl3属于六方晶系,空间群为P63/mmc。CsCdCl3的结构对称性大于RbCdCl3,其晶体结构偏离立方相的扭曲程度比RbCdCl3小,导致CsCdCl3∶Sb3+比RbCdCl3∶Sb3+有较小的斯托克斯位移,并造成发射光谱的蓝移。本工作不仅为异价阳离子取代设计新的发光材料提供了方法,而且为通过晶体结构对称调控金属卤化物的发光性能提供了思路。
Abstract
All-inorganic metal halides have shown significant applications in solid-state optoelectronics because of their flexible structures and impressive fluorescence emissions. In this study, a heterovalent cation substitution strategy was used to partially replace the divalent cadmium ions in CsCdCl3 with trivalent antimony ions to promote the production of self-trapped excitons, resulting in a bright broadband green photoluminescence of CsCdCl3∶Sb3+ with a central wavelength of 530 nm. Mechanism researches results show that the adjacent SbCl6 octahedra in CsCdCl3∶Sb3+ are isolated, forming a low-dimensional electronic configuration that promotes Sb3+ localization and achieves efficient photoluminescence with a quantum efficiency of up to 95.5%. Furthermore, although both CsCdCl3 and RbCdCl3 belong to ACdCl3 (A is an alkali metal family), they have distinctly different crystal structures. RbCdCl3 crystallizes in the orthorhombic crystal system with space group of Pnma; while CsCdCl3 crystallizes in the hexagonal phase crystal system with space group of P63/mmc. The structural symmetry of CsCdCl3 is higher than that of RbCdCl3, indicating that its crystal structure is less distorted away from the cubic phase than that of RbCdCl3, resulting in a smaller Stokes shift and corresponding blue shift of the emission spectrum in CsCdCl3∶Sb3+ than in RbCdCl3∶Sb3+. This work not only provides a method for designing new photoluminescence materials by heterovalent cation substitution but also paves an avenue for modulating the luminescent properties of metal halides through crystal structure symmetry.
参考文献

[1] MCCALL K M, MORAD V, BENIN B M, et al. Efficient lone-pair-driven luminescence: structure-property relationships in emissive 5s2 metal halides[J]. ACS Materials Letters, 2020, 2(9): 1218-1232.

[2] KESHAVARZ M, DEBROYE E, OTTESEN M, et al. Tuning the structural and optoelectronic properties of Cs2AgBiBr6 double-perovskite single crystals through alkali-metal substitution[J]. Advanced Materials, 2020, 32(40): e2001878.

[3] LI M Z, XIA Z G. Recent progress of zero-dimensional luminescent metal halides[J]. Chemical Society Reviews, 2021, 50(4): 2626-2662.

[4] LIU R X, ZHANG W J, LI G J, et al. An ultraviolet excitation anti-counterfeiting material of Sb3+ doped Cs2ZrCl6 vacancy-ordered double perovskite[J]. Inorganic Chemistry Frontiers, 2021, 8(17): 4035-4043.

[5] LIU L, NIU G D, ZHANG G D, et al. Lead-free halide perovskite Cs3Bi2Br9 single crystals for high-performance X-ray detection[J]. Science China Materials, 2021, 64(6): 1427-1436.

[6] ZHANG P, HUA Y Q, XU Y D, et al. Ultrasensitive and robust 120 keV hard X-ray imaging detector based on mixed-halide perovskite CsPbBr3-nIn single crystals[J]. Advanced Materials, 2022, 34(12): e2106562.

[7] 赫世辉, 赵 静, 刘泉林. 高效、宽带发射有机-无机金属卤化物荧光材料[J]. 无机化学学报, 2022, 38(7): 1209-1225.

[8] YU H Q, CHEN W J, FANG Z B, et al. Alkalis-doping of mixed tin-lead perovskites for efficient near-infrared light-emitting diodes[J]. Science Bulletin, 2022, 67(1): 54-60.

[9] 张欣雷, 王 涛, 查钢强. CsPbBr3单晶薄膜制备及其X射线探测性能研究[J]. 人工晶体学报, 2021, 50(10): 1900-1906.

[10] LI X F, WANG S S, ZHAO S G, et al. Mixing halogens to assemble an all-inorganic layered perovskite with warm white-light emission[J]. Chemistry, 2018, 24(37): 9243-9246.

[11] QIU Y X, MA Z M, DAI G K, et al. All-inorganic luminescent ternary cadmium halide Cs7Cd3Br13 with two types of Cd-centered polyhedrons[J]. Inorganic Chemistry, 2022, 61(7): 3288-3295.

[12] XU H P, DONG X H, ZHANG Z Z, et al. Three-dimensional all-inorganic dual halogen emitter Cs2Cd2BrCl5 exhibiting broadband white-light emission[J]. Journal of Materials Chemistry C, 2022, 10(37): 13844-13850.

[13] JIN J C, PENG Y H, XU Y T, et al. Bright green emission from self-trapped excitons triggered by Sb3+ doping in Rb4CdCl6[J]. Chemistry of Materials, 2022, 34(12): 5717-5725.

[14] MENG X F, WEI Q L, LIN W C, et al. Efficient yellow self-trapped exciton emission in Sb3+-doped RbCdCl3 metal halides[J]. Inorganic Chemistry, 2022, 61(18): 7143-7152.

[15] LI X T, HOFFMAN J M, KANATZIDIS M G. The 2D halide perovskite rulebook: how the spacer influences everything from the structure to optoelectronic device efficiency[J]. Chemical Reviews, 2021, 121(4): 2230-2291.

[16] 陈 婷, 刘晓霖. 零维金属卤化物钙钛矿的A、B、X位对其光物理性质的调控[J]. 半导体技术, 2022, 47(10): 761-773.

[17] CHEN B, GUO Y, WANG Y, et al. Multiexcitonic emission in zero-dimensional Cs2ZrCl6∶Sb3+ perovskite crystals[J]. Journal of the American Chemical Society, 2021, 143(42): 17599-17606.

[18] HAN P G, LUO C, YANG S Q, et al. All-inorganic lead-free 0D perovskites by a doping strategy to achieve a PLQY boost from <2% to 90[J]. Angewandte Chemie, 2020, 59(31): 12709-12713.

[19] 王 谦, 王京康, 成双良, 等. 零维钙钛矿结构Cs3Cu2Br5单晶的生长和X射线探测性能[J]. 人工晶体学报, 2021, 50(10): 1919-1924.

[20] SIEGEL S, GEBERT E. The structures of hexagonal CsCdCl3 and tetragonal Cs2CdCl4[J]. Acta Crystallographica, 1964, 17(6): 790.

[21] HAMZAOUI F, NOIRET I, ODOU G, et al. A new investigation of rubidium cadmium trichloride[J]. Journal of Solid State Chemistry, 1996, 124(1): 39-42.

[22] JACOBS P W M. Alkali halide crystals containing impurity ions with the ns2 ground-state electronic configuration[J]. Journal of Physics and Chemistry of Solids, 1991, 52(1): 35-67.

[23] 吴新栋, 张 潮, 刘晓霖. 钙钛矿及类钙钛矿热致变色单晶材料的研究进展[J]. 人工晶体学报, 2022, 51(6): 1099-1109.

[24] LUO J J, WANG X M, LI S R, et al. Efficient and stable emission of warm-white light from lead-free halide double perovskites[J]. Nature, 2018, 563(7732): 541-545.

[25] LIAN L Y, ZHENG M Y, ZHANG P, et al. Photophysics in Cs3Cu2X5 (X = Cl, Br, or I): highly luminescent self-trapped excitons from local structure symmetrization[J]. Chemistry of Materials, 2020, 32(8): 3462-3468.

[26] LIAN L Y, ZHENG M Y, ZHANG W Z, et al. Efficient and reabsorption-free radioluminescence in Cs3Cu2I5 nanocrystals with self-trapped excitons[J]. Advanced Science, 2020, 7(11): 2000195.

[27] LOCARDI F, SAMOLI M, MARTINELLI A, et al. Cyan emission in two-dimensional colloidal Cs2CdCl4∶Sb3+ ruddlesden-popper phase nanoplatelets[J]. ACS Nano, 2021, 15(11): 17729-17737.

[28] BARANOWSKI M, PLOCHOCKA P. Excitons in metal-halide perovskites[J]. Advanced Energy Materials, 2020, 10(26): 1903659.

宋妍, 王录, 陈明星, 魏荣敏, 李新慧, 贾贞, 夏明军. 异价阳离子替代实现的金属卤化物CsCdCl3的明亮宽带绿色发光[J]. 人工晶体学报, 2023, 52(2): 307. SONG Yan, WANG Lu, CHEN Mingxing, WEI Rongmin, LI Xinhui, JIA Zhen, XIA Mingjun. Bright Broadband Green Photoluminescence of CsCdCl3 Metal Halides Achieved by Heterovalent Cation Substitution[J]. Journal of Synthetic Crystals, 2023, 52(2): 307.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!