中国激光, 2023, 50 (9): 0907106, 网络出版: 2023-03-06   

激光散斑衬比血流成像关键技术及应用研究进展 下载: 1233次

Advances in Laser Speckle Contrast Imaging: Key Techniques and Applications
作者单位
1 华侨大学生物医学学院,福建 泉州 362021
2 华侨大学工学院,福建 泉州 362021
引用该论文

翟林君, 傅玉青, 杜永兆. 激光散斑衬比血流成像关键技术及应用研究进展[J]. 中国激光, 2023, 50(9): 0907106.

Linjun Zhai, Yuqing Fu, Yongzhao Du. Advances in Laser Speckle Contrast Imaging: Key Techniques and Applications[J]. Chinese Journal of Lasers, 2023, 50(9): 0907106.

参考文献

[1] Pijls N H J, de Vos A M J, Keulards D C J. Measurement of absolute coronary blood flow and microvascular resistance: a new window to coronary microcirculation[J]. Journal of the American College of Cardiology, 2021, 77(6): 742-744.

[2] Park J R, Lee B, Lee M J, et al. Visualization of three-dimensional microcirculation of rodents’ retina and choroid for studies of critical illness using optical coherence tomography angiography[J]. Scientific Reports, 2021, 11: 14302.

[3] Awuah A, Moore J S, Nesbit M A, et al. A novel algorithm for cardiovascular screening using conjunctival microcirculatory parameters and blood biomarkers[J]. Scientific Reports, 2022, 12: 6545.

[4] Liu C, Wang L D. Functional photoacoustic microscopy of hemodynamics: a review[J]. Biomedical Engineering Letters, 2022, 12(2): 97-124.

[5] Heeman W, Steenbergen W, van Dam G M, et al. Clinical applications of laser speckle contrast imaging: a review[J]. Journal of Biomedical Optics, 2019, 24(8): 080901.

[6] RabalH J, RobertoA, BragaH J J, Jr. Dynamic laser speckle and applications[M]. Boca Raton: CRC Press, 2018.

[7] Senarathna J, Yu H, Deng C, et al. A miniature multi-contrast microscope for functional imaging in freely behaving animals[J]. Nature Communications, 2019, 10: 99.

[8] Srienc A I, Kurth-Nelson Z L, Newman E A. Imaging retinal blood flow with laser speckle flowmetry[J]. Frontiers in Neuroenergetics, 2010, 2: 128.

[9] Hirose S, Saito W, Yoshida K, et al. Elevated choroidal blood flow velocity during systemic corticosteroid therapy in Vogt-Koyanagi-Harada disease[J]. Acta Ophthalmologica, 2008, 86(8): 902-907.

[10] Qureshi M M, Liu Y, Mac K D, et al. Quantitative blood flow estimation in vivo by optical speckle image velocimetry[J]. Optica, 2021, 8(8): 1092-1101.

[11] Wang M Y, Mao W J, Guan C Z, et al. Full-field functional optical angiography[J]. Optics Letters, 2017, 42(3): 635-638.

[12] Hashimoto K, Kunikata H, Yasuda M, et al. The relationship between advanced glycation end products and ocular circulation in type 2 diabetes[J]. Journal of Diabetes and Its Complications, 2016, 30(7): 1371-1377.

[13] Heeman W, Maassen H, Calon J, et al. Real-time visualization of renal microperfusion using laser speckle contrast imaging[J]. Journal of Biomedical Optics, 2021, 26(5): 056004.

[14] Zheng C, Lau L W, Cha J. Dual-display laparoscopic laser speckle contrast imaging for real-time surgical assistance[J]. Biomedical Optics Express, 2018, 9(12): 5962-5981.

[15] Dhanesha N, Patel R B, Doddapattar P, et al. PKM2 promotes neutrophil activation and cerebral thromboinflammation: therapeutic implications for ischemic stroke[J]. Blood, 2022, 139(8): 1234-1245.

[16] Boas D A, Dunn A K. Laser speckle contrast imaging in biomedical optics[J]. Journal of Biomedical Optics, 2010, 15(1): 011109.

[17] Feng X M, Yu Y, Zou D, et al. Functional imaging of human retina using integrated multispectral and laser speckle contrast imaging[J]. Journal of Biophotonics, 2022, 15(2): e202100285.

[18] 张进勇, 谢宗能, 孔平, 等. 散斑血流灌注成像在医学中的应用[J]. 激光与光电子学进展, 2022, 59(22): 2200003.

    Zhang J Y, Xie Z N, Kong P, et al. Application of speckle perfusion imaging in medicine[J]. Laser & Optoelectronics Progress, 2022, 59(22): 2200003.

[19] Brinca A, Pinho A, Vieira R. Laser speckle contrast imaging for assessment of human skin graft microcirculation[J]. Journal of the European Academy of Dermatology and Venereology: JEADV, 2020, 34(9): e491-e493.

[20] Draijer M, Hondebrink E, van Leeuwen T, et al. Review of laser speckle contrast techniques for visualizing tissue perfusion[J]. Lasers in Medical Science, 2009, 24(4): 639-651.

[21] LuoQ M, JiangC, LiP C, et al. Laser speckle imaging of cerebral blood flow[M]∥Tuchin V V. Handbook of coherent-domain optical methods. New York: Springer, 2012: 167-211.

[22] Kisler K, Nelson A R, Montagne A, et al. Cerebral blood flow regulation and neurovascular dysfunction in Alzheimer disease[J]. Nature Reviews Neuroscience, 2017, 18(7): 419-434.

[23] Pan H C, Liao L D, Lo Y C, et al. Neurovascular function recovery after focal ischemic stroke by enhancing cerebral collateral circulation via peripheral stimulation-mediated interarterial anastomosis[J]. Neurophotonics, 2017, 4(3): 035003.

[24] Basak K, Manjunatha M, Dutta P K. Review of laser speckle-based analysis in medical imaging[J]. Medical & Biological Engineering & Computing, 2012, 50(6): 547-558.

[25] 孔平, 杨晖, 郑刚, 等. 激光散斑血流成像技术研究新进展[J]. 光学技术, 2014, 40(1): 21-26.

    Kong P, Yang H, Zheng G, et al. Advances in laser speckle flowgraphy technique[J]. Optical Technique, 2014, 40(1): 21-26.

[26] 张锦德, 檀邹, 林黎升, 等. 激光散斑成像在血流监测中的研究进展[J]. 中国激光医学杂志, 2016, 25(5): 233-241, 244.

    Zhang J D, Tan Z, Lin L S, et al. Recent advances in monitoring blood flow with laser speckle imaging[J]. Chinese Journal of Laser Medicine&Surgery, 2016, 25(5): 233-241, 244.

[27] 李晨曦, 陈文亮, 蒋景英, 等. 激光散斑衬比血流成像技术研究进展[J]. 中国激光, 2018, 45(2): 0207006.

    Li C X, Chen W L, Jiang J Y, et al. Laser speckle contrast imaging on in vivo blood flow: a review[J]. Chinese Journal of Lasers, 2018, 45(2): 0207006.

[28] 王淼, 洪嘉驰, 周非凡, 等. 激光散斑成像技术在脑科学研究中的应用[J]. 生物化学与生物物理进展, 2021, 48(8): 922-937.

    Wang M, Hong J C, Zhou F F, et al. Application of laser speckle contrast imaging in the research on brain science[J]. Progress in Biochemistry and Biophysics, 2021, 48(8): 922-937.

[29] 邬丹丹, 姚康, 管凯捷, 等. 基于激光散斑衬比成像技术的脑血流分析[J]. 光学 精密工程, 2020, 28(11): 2411-2420.

    Wu D D, Yao K, Guan K J, et al. Cerebral blood flow analysis based on laser speckle contrast imaging technology[J]. Optics and Precision Engineering, 2020, 28(11): 2411-2420.

[30] Qiu J J, Li P C, Luo W H, et al. Spatiotemporal laser speckle contrast analysis for blood flow imaging with maximized speckle contrast[J]. Journal of Biomedical Optics, 2010, 15(1): 016003.

[31] GoodmanJ W. Speckle phenomena in optics: theory and applications[M]. Englewood: Roberts & Co., 2007.

[32] Briers J D, Webster S. Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow[J]. Journal of Biomedical Optics, 1996, 1(2): 174-179.

[33] Richards G J, Briers J D. Capillary-blood-flow monitoring using laser speckle contrast analysis (LASCA): improving the dynamic range[J]. Proceedings of SPIE, 1997, 2981: 160-171.

[34] Briers J D, Richards G, He X W. Capillary blood flow monitoring using laser speckle contrast analysis (LASCA)[J]. Journal of Biomedical Optics, 1999, 4(1): 164-175.

[35] Briers J D, Richards G J. Laser speckle contrast analysis (LASCA) for flow measurement[J]. Proceedings of SPIE, 1997, 3098: 211-221.

[36] Yoshimura T. Statistical properties of dynamic speckles[J]. Journal of the Optical Society of America A, 1986, 3(7): 1032-1054.

[37] Thompson O, Andrews M, Hirst E. Correction for spatial averaging in laser speckle contrast analysis[J]. Biomedical Optics Express, 2011, 2(4): 1021-1029.

[38] Briers J D. Laser speckle contrast imaging for measuring blood flow[J]. Optica Applicata, 2007, 37(1/2): 139-152.

[39] Fercher A F, Briers J D. Flow visualization by means of single-exposure speckle photography[J]. Optics Communications, 1981, 37(5): 326-330.

[40] Leahy M J, Enfield J G, Clancy N T, et al. Biophotonic methods in microcirculation imaging[J]. Medical Laser Application, 2007, 22(2): 105-126.

[41] Dunn A K, Bolay H, Moskowitz M A, et al. Dynamic imaging of cerebral blood flow using laser speckle[J]. Journal of Cerebral Blood Flow & Metabolism, 2001, 21(3): 195-201.

[42] Cheng H Y, Luo Q M, Zeng S Q, et al. Modified laser speckle imaging method with improved spatial resolution[J]. Journal of Biomedical Optics, 2003, 8(3): 559-564.

[43] Le T M, Paul J S, Al-Nashash H, et al. New insights into image processing of cortical blood flow monitors using laser speckle imaging[J]. IEEE Transactions on Medical Imaging, 2007, 26(6): 833-842.

[44] Duncan D D, Kirkpatrick S J. Spatio-temporal algorithms for processing laser speckle imaging data[J]. Proceedings of SPIE, 2008, 6858: 685802.

[45] Liu X H, Wei J, Meng L, et al. Motion correction of laser speckle imaging of blood flow by simultaneous imaging of tissue structure and non-rigid registration[J]. Optics and Lasers in Engineering, 2021, 140: 106526.

[46] Lü W Z, Wang Y, Chen X, et al. Enhancing vascular visualization in laser speckle contrast imaging of blood flow using multi-focus image fusion[J]. Journal of Biophotonics, 2019, 12(1): e201800100.

[47] Cheng W M, Zhu X, Chen X, et al. Manhattan distance-based adaptive 3D transform-domain collaborative filtering for laser speckle imaging of blood flow[J]. IEEE Transactions on Medical Imaging, 2019, 38(7): 1726-1735.

[48] Zhang C, Feng W, Zhao Y J, et al. A large, switchable optical clearing skull window for cerebrovascular imaging[J]. Theranostics, 2018, 8(10): 2696-2708.

[49] Hong J C, Wang Y, Chen X, et al. Fluctuations of temporal contrast in laser speckle imaging of blood flow[J]. Optics Letters, 2018, 43(21): 5214-5217.

[50] Chen M, Wen D, Huang S L, et al. Laser speckle contrast imaging of blood flow in the deep brain using microendoscopy[J]. Optics Letters, 2018, 43(22): 5627-5630.

[51] Wang Y, Wen D, Chen X, et al. Improving the estimation of flow speed for laser speckle imaging with single exposure time[J]. Optics Letters, 2017, 42(1): 57-60.

[52] Liu S S, Li P C, Luo Q M. Fast blood flow visualization of high-resolution laser speckle imaging data using graphics processing unit[J]. Optics Express, 2008, 16(19): 14321-14329.

[53] Zhang Y F, Wang C, Tong S B, et al. Separating single- and multiple-scattering components in laser speckle contrast imaging of tissue blood flow[J]. Biomedical Optics Express, 2022, 13(5): 2881-2895.

[54] Miao P, Zhang Y F, Wang C, et al. Random matrix description of dynamically backscattered coherent waves propagating in a wide-field-illuminated random medium[J]. Applied Physics Letters, 2022, 120(4): 043701.

[55] ZhangY F, WangC, TongS B, et al. Extracting single- and multiple-scattering components in laser speckle contrast imaging of tissue blood flow[EB/OL]. (2021-12-01)[2022-05-06]. https://arxiv.org/abs/2112.00537.

[56] Chen H P, Shi Y, Bo B, et al. Real-time cerebral vessel segmentation in laser speckle contrast image based on unsupervised domain adaptation[J]. Frontiers in Neuroscience, 2021, 15: 755198.

[57] ChenH P, MiaoP, BoB, et al. A prototype system of portable laser speckle imager based on embedded graphics processing unit platform[C]∥2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, July 23-27, 2019, Berlin, Germany. New York: IEEE Press, 2019: 3919-3922.

[58] Miao P, Chao Z, Feng S H, et al. Local scattering property scales flow speed estimation in laser speckle contrast imaging[J]. Laser Physics Letters, 2015, 12(7): 075601.

[59] Miao P, Chao Z, Zhang Y G, et al. Entropy analysis reveals a simple linear relation between laser speckle and blood flow[J]. Optics Letters, 2014, 39(13): 3907-3910.

[60] Miao P, Tong S B, Lu H Y, et al. Laser speckle contrast imaging of cerebral blood flow in freely moving animals[J]. Journal of Biomedical Optics, 2011, 16(9): 090502.

[61] Miao P, Rege A, Li N, et al. High resolution cerebral blood flow imaging by registered laser speckle contrast analysis[J]. IEEE Transactions on Biomedical Engineering, 2010, 57(5): 1152-1157.

[62] Miao P, Li M H, Fontenelle H, et al. Imaging the cerebral blood flow with enhanced laser speckle contrast analysis (eLASCA) by monotonic point transformation[J]. IEEE Transactions on Biomedical Engineering, 2009, 56(4): 1127-1133.

[63] Li H, Liu Q, Lu H Y, et al. Directly measuring absolute flow speed by frequency-domain laser speckle imaging[J]. Optics Express, 2014, 22(17): 21079-21087.

[64] Li C X, Wang R K. Dynamic laser speckle angiography achieved by eigen-decomposition filtering[J]. Journal of Biophotonics, 2017, 10(6/7): 805-810.

[65] 吴琼. 腹腔镜激光散斑血流成像方法研究[D]. 上海: 上海大学, 2021. 10.1007/s12204-022-2512-8

    WuQ. Study on the method of laparoscopic laser speckle blood flow imaging[D]. Shanghai: Shanghai University, 2021.

[66] 吴琼, 周伟, 徐宝腾, 等. 腹腔镜激光散斑血流成像技术[J]. 光学学报, 2022, 42(7): 0717001.

    Wu Q, Zhou W, Xu B T, et al. Laparoscopic laser speckle blood flow imaging technology[J]. Acta Optica Sinica, 2022, 42(7): 0717001.

[67] 李宜璋, 杨晖, 李然, 等. 激光散斑血流成像系统中的光源相干性[J]. 光学 精密工程, 2019, 27(10): 2127-2135.

    Li Y Z, Yang H, Li R, et al. Source coherence in laser speckle blood imaging system[J]. Optics and Precision Engineering, 2019, 27(10): 2127-2135.

[68] 贾亚威, 杨晖, 李然, 等. 激光散斑血流成像对中医理疗功效的检测[J]. 光学 精密工程, 2017, 25(6): 1410-1417.

    Jia Y W, Yang H, Li R, et al. Measurement of physical therapy efficiency of traditional Chinese medicine by laser speckle blood flow imaging[J]. Optics and Precision Engineering, 2017, 25(6): 1410-1417.

[69] Zeng Y G, Wang M Y, Feng G P, et al. Laser speckle imaging based on intensity fluctuation modulation[J]. Optics Letters, 2013, 38(8): 1313-1315.

[70] Wang M Y, Zeng Y G, Liang X J, et al. Full-field optical micro-angiography[J]. Applied Physics Letters, 2014, 104(5): 053704.

[71] 吴南寿. 全场光学血管造影功能成像技术研究[D]. 佛山: 佛山科学技术学院, 2019.

    WuN S. The study on full-field optical angiography functional imaging technique[D]. Foshan: Foshan University, 2019.

[72] Wang M Y, Guan C Z, Mao W J, et al. Real-time full-field optical angiography utilizing principal component analysis[J]. Optics Letters, 2018, 43(11): 2559-2562.

[73] Liu C, Kılıç K, Erdener S E, et al. Choosing a model for laser speckle contrast imaging[J]. Biomedical Optics Express, 2021, 12(6): 3571-3583.

[74] Postnov D D, Tang J B, Erdener S E, et al. Dynamic light scattering imaging[J]. Science Advances, 2020, 6(45): eabc4628.

[75] Postnov D D, Cheng X J, Erdener S E, et al. Choosing a laser for laser speckle contrast imaging[J]. Scientific Reports, 2019, 9: 2542.

[76] Yuan S, Devor A, Boas D A, et al. Determination of optimal exposure time for imaging of blood flow changes with laser speckle contrast imaging[J]. Applied Optics, 2005, 44(10): 1823-1830.

[77] Ayata C, Dunn A K, Gursoy-Ozdemir Y, et al. Laser speckle flowmetry for the study of cerebrovascular physiology in normal and ischemic mouse cortex[J]. Journal of Cerebral Blood Flow and Metabolism, 2004, 24(7): 744-755.

[78] Boas D A, Yodh A G. Spatially varying dynamical properties of turbid media probed with diffusing temporal light correlation[J]. Journal of the Optical Society of America A, 1997, 14(1): 192-215.

[79] Kazmi S M S, Balial S, Dunn A K. Optimization of camera exposure durations for multi-exposure speckle imaging of the microcirculation[J]. Biomedical Optics Express, 2014, 5(7): 2157-2171.

[80] Davis M A, Kazmi S M S, Dunn A K. Imaging depth and multiple scattering in laser speckle contrast imaging[J]. Journal of Biomedical Optics, 2014, 19(8): 086001.

[81] Richards L M, Kazmi S M S, Davis J L, et al. Low-cost laser speckle contrast imaging of blood flow using a webcam[J]. Biomedical Optics Express, 2013, 4(10): 2269-2283.

[82] Tom W J, Ponticorvo A, Dunn A K. Efficient processing of laser speckle contrast images[J]. IEEE Transactions on Medical Imaging, 2008, 27(12): 1728-1738.

[83] Parthasarathy A B, Tom W J, Gopal A, et al. Robust flow measurement with multi-exposure speckle imaging[J]. Optics Express, 2008, 16(3): 1975-1989.

[84] Zakharov P, Völker A C, Wyss M T, et al. Dynamic laser speckle imaging of cerebral blood flow[J]. Optics Express, 2009, 17(16): 13904-13917.

[85] Völker A C, Zakharov P, Weber B, et al. Laser speckle imaging with an active noise reduction scheme[J]. Optics Express, 2005, 13(24): 9782-9787.

[86] Lertsakdadet B, Dunn C, Bahani A, et al. Handheld motion stabilized laser speckle imaging[J]. Biomedical Optics Express, 2019, 10(10): 5149-5158.

[87] Farraro R, Fathi O, Handheld Choi B.. point-of-care laser speckle imaging[J]. Journal of Biomedical Optics, 2016, 21(9): 094001.

[88] Regan C, Yang B Y, Mayzel K C, et al. Fiber-based laser speckle imaging for the detection of pulsatile flow[J]. Lasers in Surgery and Medicine, 2015, 47(6): 520-525.

[89] Crouzet C, Nguyen J Q, Ponticorvo A, et al. Acute discrimination between superficial-partial and deep-partial thickness burns in a preclinical model with laser speckle imaging[J]. Burns, 2015, 41(5): 1058-1063.

[90] Rice T B, Kwan E, Hayakawa C K, et al. Quantitative, depth-resolved determination of particle motion using multi-exposure, spatial frequency domain laser speckle imaging[J]. Biomedical Optics Express, 2013, 4(12): 2880-2892.

[91] Ramirez-San-Juan J C, Mendez-Aguilar E, Salazar-Hermenegildo N, et al. Effects of speckle/pixel size ratio on temporal and spatial speckle-contrast analysis of dynamic scattering systems: implications for measurements of blood-flow dynamics[J]. Biomedical Optics Express, 2013, 4(10): 1883-1889.

[92] Yang O, Cuccia D J, Choi B. Real-time blood flow visualization using the graphics processing unit[J]. Journal of Biomedical Optics, 2011, 16(1): 016009.

[93] Huang Y C, Ringold T L, Nelson J S, et al. Noninvasive blood flow imaging for real-time feedback during laser therapy of port wine stain birthmarks[J]. Lasers in Surgery and Medicine, 2008, 40(3): 167-173.

[94] Ramirez-San-Juan J C, Nelson J S, Choi B. Comparison of Lorentzian- and Gaussian-based approaches for laser speckle imaging of blood flow dynamics[J]. Proceedings of SPIE, 2006, 6079: 607924.

[95] Choi B, Ramirez-San-Juan J C, Lotfi J, et al. Linear response range characterization and in vivo application of laser speckle imaging of blood flow dynamics[J]. Journal of Biomedical Optics, 2006, 11(4): 041129.

[96] Briers D, Duncan D D, Hirst E R, et al. Laser speckle contrast imaging: theoretical and practical limitations[J]. Journal of Biomedical Optics, 2013, 18(6): 066018.

[97] YuanS. Sensitivity, noise and quantitative model of laser speckle contrast imaging[D]. Medford: Tufts University, 2008.

[98] Rege A, Senarathna J, Li N, et al. Anisotropic processing of laser speckle images improves spatiotemporal resolution[J]. IEEE Transactions on Biomedical Engineering, 2012, 59(5): 1272-1280.

[99] KulkarniR, BanothE, PalP. Dynamic laser speckle contrast imaging using singular value decomposition[C]∥Digital Holography and Three-Dimensional Imaging 2020, June 22-26, 2020, Washington, D.C., USA. Washington, D.C.: Optica Publishing Group, 2020: JW2A.44.

[100] Lu Y M, Wang R K. Removing dynamic distortions from laser speckle flowgraphy using eigen-decomposition and spatial filtering[J]. Journal of Biophotonics, 2022, 15(1): e202100294.

[101] Song L P, Wang X Y, Zhang R, et al. Improving temporal resolution and speed sensitivity of laser speckle contrast analysis imaging based on noise reduction with an anisotropic diffusion filter[J]. Journal of Optics, 2018, 20(7): 075301.

[102] Dabov K, Foi A, Katkovnik V, et al. Image denoising by sparse 3-D transform-domain collaborative filtering[J]. IEEE Transactions on Image Processing, 2007, 16(8): 2080-2095.

[103] 苗鹏. 高分辨率激光散斑血流成像技术及其应用[D]. 上海: 上海交通大学, 2011.

    MiaoP. High resolution laser speckle imaging of blood flow: methods and applications[D]. Shanghai: Shanghai Jiao Tong University, 2011.

[104] 苏成志, 陈栋, 曹国华, 等. 减小光强不均对CCD非均匀性校正的影响[J]. 红外与激光工程, 2011, 40(4): 680-684.

    Su C Z, Chen D, Cao G H, et al. Reducing the influence of non-uniformity of luminous intensity on the inhomogeneity correction for CCD[J]. Infrared and Laser Engineering, 2011, 40(4): 680-684.

[105] Brown L G. A survey of image registration techniques[J]. ACM Computing Surveys, 1992, 24(4): 325-376.

[106] Guilbert J, Desjardins M. Movement correction method for laser speckle contrast imaging of cerebral blood flow in cranial windows in rodents[J]. Journal of Biophotonics, 2022, 15(1): e202100218.

[107] Li Y Y, Liu R, Wang Y, et al. Detecting relative speed changes of moving objects through scattering medium by using wavefront shaping and laser speckle contrast analysis[J]. Optics Express, 2016, 24(8): 8382-8390.

[108] Sigal I, Gad R, Caravaca-Aguirre A M, et al. Laser speckle contrast imaging with extended depth of field for in-vivo tissue imaging[J]. Biomedical Optics Express, 2013, 5(1): 123-135.

[109] Ringuette D, Sigal I, Gad R, et al. Reducing misfocus-related motion artefacts in laser speckle contrast imaging[J]. Biomedical Optics Express, 2015, 6(1): 266-276.

[110] Song L P, Elson D S. Effect of signal intensity and camera quantization on laser speckle contrast analysis[J]. Biomedical Optics Express, 2013, 4(1): 89-104.

[111] Kim S, Kim E, Anguluan E, et al. Sample entropy analysis of laser speckle fluctuations to suppress motion artifact on blood flow monitoring[J]. Chinese Optics Letters, 2022, 20(1): 011702.

[112] 田冰心, 韩军, 刘丙才. 随机散射介质内非侵入式深度聚焦技术研究[J]. 激光与光电子学进展, 2022, 59(10): 1029001.

    Tian B X, Han J, Liu B C. Research on non-invasive deep focusing in random scattering medium[J]. Laser & Optoelectronics Progress, 2022, 59(10): 1029001.

[113] 李阳阳. 基于波前调制技术的散射介质激光散斑衬比成像系统研究[D]. 武汉: 华中科技大学, 2018.

    LiY Y. Research on laser speckle contrast imaging technology through scattering media based on wavefront modulation technology[D]. Wuhan: Huazhong University of Science and Technology, 2018.

[114] Fredriksson I, Larsson M. On the equivalence and differences between laser Doppler flowmetry and laser speckle contrast analysis[J]. Journal of Biomedical Optics, 2016, 21(12): 126018.

[115] Kazmi S M S, Faraji E, Davis M A, et al. Flux or speed? Examining speckle contrast imaging of vascular flows[J]. Biomedical Optics Express, 2015, 6(7): 2588-2608.

[116] Lee B, Sosnovtseva O, Sørensen C M, et al. Multi-scale laser speckle contrast imaging of microcirculatory vasoreactivity[J]. Biomedical Optics Express, 2022, 13(4): 2312-2322.

[117] 高敬敬, 刘红林, 王歆, 等. 毛玻璃和体散射介质的散射等效性对比研究[J]. 光学学报, 2021, 41(17): 1729002.

    Gao J J, Liu H L, Wang X, et al. Comparison of scattering equivalence between ground glass and volume scattering media[J]. Acta Optica Sinica, 2021, 41(17): 1729002.

[118] Zheng S Q, Xiao S, Kretsge L, et al. Depth resolution in multifocus laser speckle contrast imaging[J]. Optics Letters, 2021, 46(19): 5059-5062.

[119] Xiao S, Gritton H, Tseng H A, et al. High-contrast multifocus microscopy with a single camera and z-splitter prism[J]. Optica, 2020, 7(11): 1477-1486.

[120] Buijs J, Gucht J V D, Sprakel J. Fourier transforms for fast and quantitative laser speckle imaging[J]. Scientific Reports, 2019, 9: 13279.

[121] Chen M T, Papadakis M, Durr N J. Speckle illumination SFDI for projector-free optical property mapping[J]. Optics Letters, 2021, 46(3): 673-676.

[122] Mizeva I, Dremin V, Potapova E, et al. Wavelet analysis of the temporal dynamics of the laser speckle contrast in human skin[J]. IEEE Transactions on Bio-Medical Engineering, 2020, 67(7): 1882-1889.

[123] Adrian R J. Particle-imaging techniques for experimental fluid mechanics[J]. Annual Review of Fluid Mechanics, 1991, 23: 261-304.

[124] Keane R D, Adrian R J. Theory of cross-correlation analysis of PIV images[J]. Applied Scientific Research, 1992, 49(3): 191-215.

[125] Liu X L, Yang H, Li R. Improving contrast accuracy and resolution of laser speckle contrast imaging using two-dimensional entropy algorithm[J]. IEEE Access, 2021, 9: 148925-148932.

[126] Hultman M, Fredriksson I, Larsson M, et al. A 15.6 frames per second 1-megapixel multiple exposure laser speckle contrast imaging setup[J]. Journal of Biophotonics, 2018, 11(2): e201700069.

[127] He H, Tang Y, Zhou F Y, et al. Lateral laser speckle contrast analysis combined with line beam scanning illumination to improve the sampling depth of blood flow imaging[J]. Optics Letters, 2012, 37(18): 3774-3776.

[128] VarmaH M, ValdesC P, KristoffersenA K, et al. Speckle contrast optical tomography (SCOT): reconstructing the three dimensional distribution of blood flow in deep tissues[C]∥Biomedical Optics 2014, April 36-30, 2014, Miami, Florida, USA. Washington, D.C.: Optica Publishing Group, 2014: BW3B.2.

[129] Varma H M, Valdes C P, Kristoffersen A K, et al. Speckle contrast optical tomography: a new method for deep tissue three-dimensional tomography of blood flow[J]. Biomedical Optics Express, 2014, 5(4): 1275-1289.

[130] Li D Y, Xia Q, Yu T T, et al. Transmissive-detected laser speckle contrast imaging for blood flow monitoring in thick tissue: from Monte Carlo simulation to experimental demonstration[J]. Light: Science & Applications, 2021, 10: 241.

[131] Dunn J F, Forrester K R, Martin L, et al. A transmissive laser speckle imaging technique for measuring deep tissue blood flow: an example application in finger joints[J]. Lasers in Surgery and Medicine, 2011, 43(1): 21-28.

[132] Bi R Z, Dong J, Lee K. Deep tissue flowmetry based on diffuse speckle contrast analysis[J]. Optics Letters, 2013, 38(9): 1401-1403.

[133] Siket M, Jánoki I, Demeter K, et al. Time varied illumination laser speckle contrast imaging[J]. Optics Letters, 2021, 46(4): 713-716.

[134] Tang X J, He H, Jiang C, et al. The multiple parameter hemodynamic imaging system based on ARM[J]. Proceedings of SPIE, 2009, 7280: 72800Y.

[135] Tang X J, Feng N Y, Sun X L, et al. Portable laser speckle perfusion imaging system based on digital signal processor[J]. Review of Scientific Instruments, 2010, 81(12): 125110.

[136] Jiang C, Zhang H Y, Wang J, et al. Dedicated hardware processor and corresponding system-on-chip design for real-time laser speckle imaging[J]. Journal of Biomedical Optics, 2011, 16(11): 116008.

[137] 唐学俊. 便携式激光散斑衬比成像系统及其应用的研究[D]. 武汉: 华中科技大学, 2011.

    TangX J. Research on portable laser speckle contrast imaging system and its applications[D]. Wuhan: Huazhong University of Science and Technology, 2011.

[138] O'Doherty J, McNamara P, Clancy N T, et al. Comparison of instruments for investigation of microcirculatory blood flow and red blood cell concentration[J]. Journal of Biomedical Optics, 2009, 14(3): 034025.

[139] Qin J, Reif R, Zhi Z W, et al. Hemodynamic and morphological vasculature response to a burn monitored using a combined dual-wavelength laser speckle and optical microangiography imaging system[J]. Biomedical Optics Express, 2012, 3(3): 455-466.

[140] Liu Q, Chen S Y, Soetikno B, et al. Monitoring acute stroke in mouse model using laser speckle imaging-guided visible-light optical coherence tomography[J]. IEEE Transactions on Biomedical Engineering, 2018, 65(10): 2136-2142.

[141] Lee S, Namgoong J M, Kim Y, et al. Multimodal imaging of laser speckle contrast imaging combined with mosaic filter-based hyperspectral imaging for precise surgical guidance[J]. IEEE Transactions on Biomedical Engineering, 2022, 69(1): 443-452.

[142] Liang W X, Hall G, Messerschmidt B, et al. Nonlinear optical endomicroscopy for label-free functional histology in vivo[J]. Light: Science & Applications, 2017, 6(11): e17082.

[143] Gao W, Ota H, Kiriya D, et al. Flexible electronics toward wearable sensing[J]. Accounts of Chemical Research, 2019, 52(3): 523-533.

[144] Chen Y H, Rommelfanger N J, Mahdi A I, et al. How is flexible electronics advancing neuroscience research?[J]. Biomaterials, 2021, 268: 120559.

[145] Wang D P, Xia J. Optics based biomedical imaging: principles and applications[J]. Journal of Applied Physics, 2019, 125(19): 191101.

[146] TuchinV V. Handbook of coherent-domain optical methods: biomedical diagnosis, environmental monitoring, and materials science[M]. 2nd ed. New York: Springer, 2013.

[147] McDonald D M, Choyke P L. Imaging of angiogenesis: from microscope to clinic[J]. Nature Medicine, 2003, 9(6): 713-725.

[148] AlJaroudi W A, Hage F G. Review of cardiovascular imaging in the Journal of Nuclear Cardiology 2020: positron emission tomography, computed tomography, and magnetic resonance[J]. Journal of Nuclear Cardiology, 2021, 28(5): 2100-2111.

[149] Driessen R S, Danad I, Stuijfzand W J, et al. Comparison of coronary computed tomography angiography, fractional flow reserve, and perfusion imaging for ischemia diagnosis[J]. Journal of the American College of Cardiology, 2019, 73(2): 161-173.

[150] Hajhosseiny R, Bustin A, Munoz C, et al. Coronary magnetic resonance angiography: technical innovations leading us to the promised land?[J]. JACC: Cardiovascular Imaging, 2020, 13(12): 2653-2672.

翟林君, 傅玉青, 杜永兆. 激光散斑衬比血流成像关键技术及应用研究进展[J]. 中国激光, 2023, 50(9): 0907106. Linjun Zhai, Yuqing Fu, Yongzhao Du. Advances in Laser Speckle Contrast Imaging: Key Techniques and Applications[J]. Chinese Journal of Lasers, 2023, 50(9): 0907106.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!