人工晶体学报, 2023, 52 (2): 208, 网络出版: 2023-03-18  

基于ZnO电子传输层钙钛矿太阳能电池的研究进展

Research Progress of Perovskite Solar Cells Based on ZnO as Electron Transport Layer
作者单位
1 北方民族大学材料科学与工程学院,宁夏硅靶及硅碳负极材料工程技术研究中心,银川 750021
2 银川艾尼工业科技开发股份有限公司,银川 750299
3 青岛睿海兴业管理咨询服务有限公司,青岛 266041
摘要
作为新一代低成本、高效率的光伏器件,以有机卤化铅CH3NH3PbX3(MAPbX3,X=Br、I、Cl)为光吸收层的钙钛矿太阳能电池(PSCs)相比于其他类型的光伏器件,具有原料丰富、工艺简单等特点。在较短的时间内,该类电池效率已由3.8%迅速攀升至25.7%,几乎可以媲美商用硅太阳能电池,成为能源应用领域的一颗新星。氧化锌(ZnO)因其具有材料易于加工、电子迁移率高、制造成本低廉且形貌结构多样等优点,被作为该类电池较为重要的一种电子传输层(ETL)而被广为研究。本文主要以不同结构的ZnO纳米薄膜ETL作为研究对象,对其在PSCs中的应用进行了总结,详细介绍了基于不同形貌ZnO纳米结构PSCs的研究进展,分析了该类电池面临的主要问题与解决处理方式,并对未来的发展趋势进行了展望。
Abstract
Perovskite solar cells (PSCs) with CH3NH3PbX3 (MAPbX3, X=Br, I, Cl) as light-absorbing layer are used as a new generation of low-cost, high-efficiency photovoltaic devices. Compared with other types of photovoltaic devices, this type of cell has the advantages of abundant raw materials, simple process, etc., and its efficiency has risen rapidly from 3.8% to 25.7% in less than 15 years. It is almost comparable to commercial silicon solar cells and has become a new star in the field of energy applications. Normally, zinc oxide (ZnO) has been widely studied as the most important electron transport layer (ETL) of PSCs because of its advantages such as easy processed, high electron mobility, low manufacturing cost, and diverse morphology and structure. In this paper, ETL of ZnO nano film with different structures is taken as the research object, and its application in PSCs is summarized. The research progress of PSCs based on different morphology ZnO nano structures is introduced in detail, and the main problems faced by this type of solar cells are analyzed. In addition, the development trend of this device is proposed.
参考文献

[1] OKU T. Crystal structures of perovskite halide compounds used for solar cells[J]. Reviews on Advanced Materials Science, 2020, 59(1): 264-305.

[2] KOJIMA A, TESHIMA K, SHIRAI Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. Journal of the American Chemical Society, 2009, 131: 6050-6051.

[3] NREL. Best research-cell efficiency chart[EB/OL]. https://www.nrel.gov/pv/cell-efficiency.html.

[4] CHOUHAN L T, GHIMIRE S, SUBRAHMANYAM C, et al. Synthesis, optoelectronic properties and applications of halide perovskites[J]. Chemical Society Reviews, 2020, 49(10): 2869-2885.

[5] LUO J, WANG Y X, ZHANG Q F. Progress in perovskite solar cells based on ZnO nanostructures[J]. Solar Energy, 2018, 163: 289-306.

[6] BURSCHKA J, PELLET N, MOON S J, et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells[J]. Nature, 2013, 499:316-319.

[7] BERHE T A, SU W N, CHEN C H, et al. Organometal halide perovskite solar cells: degradation and stability[J]. Energy & Environmental Science, 2016, 9(2): 323-356.

[8] ZHOU Y, LI X, LIN H. To be higher and stronger-metal oxide electron transport materials for perovskite solar cells[J]. Small, 2020, 16(15): e1902579.

[9] NAMGUNG G, TA Q T H, YANG W, et al. Diffusion-driven Al-doping of ZnO nanorods and stretchable gas sensors made of doped ZnO nanorods/Ag nanowires bilayers[J]. ACS Applied Materials & Interfaces, 2019, 11(1): 1411-1419.

[10] MANABENG M, MWANKEMWA B S, OCAYA R O, et al. A review of the impact of zinc oxide nanostructure morphology on perovskite solar cell performance[J]. Processes, 2022, 10(9): 1803.

[11] TANG J F, SIE Y D, TSENG Z L, et al. Perovskite quantum dot-ZnO nanowire composites for ultraviolet-visible photodetectors[J]. ACS Applied Nano Materials, 2022, 5(5): 7237-7245.

[12] SUBRAMANI K, SATHISH M. Facile synthesis of ZnO nanoflowers/reduced graphene oxide nanocomposite using zinc hexacyanoferrate for supercapacitor applications[J]. Materials Letters, 2019, 236: 424-427.

[13] XIONG S, QIAN X F, ZHONG Z X, et al. Atomic layer deposition for membrane modification, functionalization and preparation: a review[J]. Journal of Membrane Science, 2022, 658: 120740.

[14] PARK H H. Inorganic materials by atomic layer deposition for perovskite solar cells[J]. Nanomaterials, 2021, 11(1): 88.

[15] YANG Y F, ZHANG Y J, BAI L Y, et al. Research progress of atomic layer deposition technology to improve the long-term stability of perovskite solar cells[J]. Journal of Materials Chemistry C, 2022, 10(3): 819-839.

[16] CHO Y J, JEONG M J, PARK J H, et al. Charge transporting materials grown by atomic layer deposition in perovskite solar cells[J]. Energies, 2021, 14(4): 1156.

[17] KRUSZYN'SKA J, OSTAPKO J, OZKAYA V, et al. Atomic layer engineering of aluminum-doped zinc oxide films for efficient and stable perovskite solar cells[J]. Advanced Materials Interfaces, 2022, 9(17): 2200575.

[18] AHMAD S, ABBAS H, KHAN M B, et al. ZnO for stable and efficient perovskite bulk heterojunction solar cell fabricated under ambient atmosphere[J]. Solar Energy, 2021, 216: 164-170.

[19] CHEN C J, CHANDEL A, THAKUR D, et al. Ag modified bathocuproine: ZnO nanoparticles electron buffer layer based bifacial inverted-type perovskite solar cells[J]. Organic Electronics, 2021, 92: 106110.

[20] LAILA I K R, MUFTI N, MARYAM S, et al. Synthesis and characterization of ZnO nanorods by hydrothermal methods and its application on perovskite solar cells[J]. Journal of Physics: Conference Series, 2018, 1093: 012012.

[21] ZHONG M, CHAI L, WANG Y J. Core-shell structure of ZnO@TiO2 nanorod arrays as electron transport layer for perovskite solar cell with enhanced efficiency and stability[J]. Applied Surface Science, 2019, 464: 301-310.

[22] MAKENALI M, KAZEMINEZHAD I, ROGHABADI F A, et al. Efficiency improvement of perovskite solar cells by charge transport balancing using length tunable ZnO nanorods and optimized perovskite morphology[J]. Solar Energy Materials and Solar Cells, 2021, 230: 111206.

[23] IRANDOOST R, SOLEIMANI-AMIRI S. Design and analysis of high efficiency perovskite solar cell with ZnO nanorods and plasmonic nanoparticles[J]. Optik, 2020, 202: 163598.

[24] MAHMOOD K, KHALID A, MEHRAN M T. Nanostructured ZnO electron transporting materials for hysteresis-free perovskite solar cells[J]. Solar Energy, 2018, 173: 496-503.

[25] MAKABLEH Y F, ALJAIUOSSI G, AL-ABED R. Comprehensive design analysis of electron transmission nanostructured layers of heterojunction perovskite solar cells[J]. Superlattices and Microstructures, 2019, 130: 390-395.

[26] WANG D, WU C C, LUO W, et al. ZnO/SnO2 double electron transport layer guides improved open circuit voltage for highly efficient CH3NH3PbI3-based planar perovskite solar cells[J]. ACS Applied Energy Materials, 2018, 1(5): 2215-2221.

[27] DEHGHAN M, BEHJAT A. Deposition of zinc oxide as an electron transport layer in planar perovskite solar cells by spray and SILAR methods comparable with spin coating[J]. RSC Advances, 2019, 9(36): 20917-20924.

[28] ZHANG Y N, LI B, FU L, et al. MOF-derived ZnO as electron transport layer for improving light harvesting and electron extraction efficiency in perovskite solar cells[J]. Electrochimica Acta, 2020, 330: 135280.

[29] MIAO Y H, DU P, WANG Z Y, et al. Ultrasonic vibration imposed on nanoparticle-based ZnO film improves the performance of the ensuing perovskite solar cell[J]. Materials Research Express, 2018, 5(2): 026404.

[30] SHALAN A E, EL-SHAZLY A N, RASHAD M M, et al. Tin-zinc-oxide nanocomposites (SZO) as promising electron transport layers for efficient and stable perovskite solar cells[J]. Nanoscale Advances, 2019, 1(7): 2654-2662.

[31] NAJAFI M, DI GIACOMO F, ZHANG D, et al. Highly efficient and stable flexible perovskite solar cells with metal oxides nanoparticle charge extraction layers[J]. Small, 2018, 14(12): e1702775.

[32] YUN S, GUO T, LI Y X, et al. Well-ordered vertically aligned ZnO nanorods arrays for high-performance perovskite solar cells[J]. Materials Research Bulletin, 2020, 130: 110935.

[33] MAHMOOD K, HAMEED M, REHMAN F, et al. A multifunctional blade-coated ZnO seed layer for high-efficiency perovskite solar cells[J]. Applied Physics A, 2019, 125(2): 83.

[34] CHANDRASEKHAR P S, DUBEY A, QIAO Q Q. High efficiency perovskite solar cells using nitrogen-doped graphene/ZnO nanorod composite as an electron transport layer[J]. Solar Energy, 2020, 197: 78-83.

[35] MAKENALI M, KAZEMINEZHAD I. Optimising ZnO seed layer to improve the growth of the dense, aligned ZnO nanorods as an electron transport layer in perovskite solar cell applications[J]. Materials Research Innovations, 2021, 25(7): 387-392.

[36] ZHANG Y, ZHAI G M, GAO L W, et al. Improving performance of perovskite solar cells based on ZnO nanorods via rod-length control and sulfidation treatment[J]. Materials Science in Semiconductor Processing, 2020, 117: 105205.

[37] CHEN J Q, CAI X, YANG D H, et al. Recent progress in stabilizing hybrid perovskites for solar cell applications[J]. Journal of Power Sources, 2017, 355: 98-133.

[38] YANG J L, SIEMPELKAMP B D, MOSCONI E, et al. Origin of the thermal instability in CH3NH3PbI3 thin films deposited on ZnO[J]. Chemistry of Materials, 2015, 27(12): 4229-4236.

[39] NIU G D, LI W Z, MENG F Q, et al. Study on the stability of CH3NH3PbI3 films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells[J]. Journal of Materials Chemistry A, 2014, 2(3): 705-710.

[40] MA J, LIN Z H, GUO X, et al. Low-temperature solution-processed ZnO electron transport layer for highly efficient and stable planar perovskite solar cells with efficiency over 20%[J]. Solar RRL, 2019, 3(7): 1900096.

[41] ZHANG Z Y, XU L, QI J J. Improved efficiency and stability of perovskite solar cells with molecular ameliorating of ZnO nanorod/perovskite interface and Mg-doping ZnO[J]. Chinese Physics B, 2021, 30(3): 038801.

[42] YANG H, KWON H C, MA S, et al. Energy level-graded Al-doped ZnO protection layers for copper nanowire-based window electrodes for efficient flexible perovskite solar cells[J]. ACS Applied Materials & Interfaces, 2020, 12(12): 13824-13835.

[43] SEOK H J, ALI A, SEO J H, et al. ZnO: Ga-graded ITO electrodes to control interface between PCBM and ITO in planar perovskite solar cells[J]. Science and Technology of Advanced Materials, 2019, 20(1): 389-400.

[44] LIN L Y, JONES T W, YANG T C J, et al. Electron transport materials: inorganic electron transport materials in perovskite solar cells[J]. Advanced Functional Materials, 2021, 31(5): 2170032.

[45] TAVAKOLI M M, TAVAKOLI R, YADAV P, et al. A graphene/ZnO electron transfer layer together with perovskite passivation enables highly efficient and stable perovskite solar cells[J]. Journal of Materials Chemistry A, 2019, 7(2): 679-686.

[46] CAO J, WU B H, CHEN R H, et al. Efficient, hysteresis-free, and stable perovskite solar cells with ZnO as electron-transport layer: effect of surface passivation[J]. Advanced Materials, 2018, 30(11): 1705596.

[47] YANG Z L, FAN Q, SHEN T, et al. Amine-passivated ZnO electron transport layer for thermal stability-enhanced perovskite solar cells[J]. Solar Energy, 2020, 204: 223-230.

卢辉, 温谦, 王佳棋, 沙思淼, 王康, 孙伟东, 吴建栋, 马金福, 侯春平, 盛之林, 冯伟光. 基于ZnO电子传输层钙钛矿太阳能电池的研究进展[J]. 人工晶体学报, 2023, 52(2): 208. LU Hui, WEN Qian, WANG Jiaqi, SHA Simiao, WANG Kang, SUN Weidong, WU Jiandong, MA Jinfu, HOU Chunping, SHENG Zhilin, FENG Weiguang. Research Progress of Perovskite Solar Cells Based on ZnO as Electron Transport Layer[J]. Journal of Synthetic Crystals, 2023, 52(2): 208.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!