硅酸盐通报, 2023, 42 (6): 2081, 网络出版: 2023-11-20  

粉煤灰基多孔地聚物的结构及过滤性能

Structure and Filtration Performance of Fly Ash-Based Porous Geopolymer
作者单位
1 东北大学冶金学院, 沈阳 110819
2 材料先进制备技术教育部工程研究中心, 沈阳 110819
3 抚顺天成环保科技有限公司, 抚顺 113001
摘要
目前, 工业除尘滤袋的工作温度不高于280 ℃, 通常在过滤前需先将高温烟气进行降温处理。为了制备高效且耐温性良好的新型过滤材料, 本文以粉煤灰为主要原料, 以H2O2为发泡剂, 通过聚合反应制备了多孔地聚物, 并对其形貌、孔结构、抗折强度和过滤性能进行了表征。结果表明: H2O2的最佳添加量为0.98%(质量分数), 此时多孔地聚物下表面与内部的平均孔径分别为17.3和171.5 μm, 孔隙率为56.2%, 常温下抗折强度为2.2 MPa, 过滤阻力为6.2×10-3 MPa, 对PM10和PM2.5的过滤效率分别为98.2%和93.3%, 经800 ℃的热处理后, 抗折强度增加到3.4 MPa, 对PM10和PM2.5的过滤效率均保持在90%以上, 过滤阻力增加了1×10-3 MPa。因此, 以粉煤灰基多孔地聚物作为高温烟气过滤材料具有良好的应用前景。
Abstract
At present, the working temperature of industrial dust removal filter bag is not higher than 280 ℃. The high temperature flue gas needs to be cooled before filtration. In order to prepare a new type of filter material with high efficiency and good temperature resistance, porous geopolymer was prepared by polymerization reaction with fly ash as the main raw material and H2O2 as foaming agent. The morphology, pore structure, flexural strength and filtration performance were characterized. The results show that the optimum addition of H2O2 is 0.98%(mass fraction). The average pore diameters of the lower surface and the interior of the porous geopolymer are 17.3 and 171.5 μm respectively, the porosity is 56.2%, the flexural strength at room temperature is 2.2 MPa, the filtration resistance is 6.2×10-3 MPa, and the filtration efficiency of PM10 and PM2.5 are 98.2% and 93.3%, respectively. After heat treatment at 800 ℃, the flexural strength increases to 3.4 MPa, and the filtration efficiency of PM10 and PM2.5 remains above 90%. The filtration resistance increases by 1×10-3 MPa. Therefore, the fly ash-based porous geopolymer has a good application prospect as a high-temperature flue gas filtration material.
参考文献

[1] 张 娟. 高温气体除尘技术及其研究进展[J]. 资源节约与环保, 2016, 172(3): 17-19.

[2] 姬忠礼, 栾 鑫, 苗林丰. 高温气体过滤技术及装备发展概况[J]. 化工进展, 2020, 39(6): 2304-2311.

[3] HEIDENREICH S. Hot gas filtration-a review[J]. Fuel, 2013, 104: 83-94.

[4] 喻林萍, 刘新利, 张惠斌, 等. 金属及金属合金微滤膜的研究进展[J]. 粉末冶金材料科学与工程, 2015, 20(5): 670-674.

[5] KONG D L Y, SANJAYAN J G, SAGOE-CRENTSIL K. Comparative performance of geopolymers made with metakaolin and fly ash after exposure to elevated temperatures[J]. Cement and Concrete Research, 2007, 37(12): 1583-1589.

[6] XU M X, HE Y, LIU Z H, et al. Preparation of geopolymer inorganic membrane and purification of pulp-papermaking green liquor[J]. Applied Clay Science, 2019, 168: 269-275.

[7] XU M X, HE Y, ZHANG Z W, et al. Preparation of geopolymer-based porous filter using the quartz sand compact method[J]. Journal of Porous Materials, 2020, 27(3): 863-874.

[8] WANG J T, GE Y Y, HE Y, et al. A porous gradient geopolymer-based tube membrane with high PM removal rate for air pollution[J]. Journal of Cleaner Production, 2019, 217: 335-343.

[9] ZHANG Z W, YU H Y, XU M X, et al. Preparation, characterization and application of geopolymer-based tubular inorganic membrane[J]. Applied Clay Science, 2021, 203: 106001.

[10] SONG Y, LI Z L, ZHANG J B, et al. A low-cost biomimetic heterostructured multilayer membrane with geopolymer microparticles for broad-spectrum water purification[J]. ACS Applied Materials & Interfaces, 2020, 12(10): 12133-12142.

[11] CHEN H, ZHANG Y J, HE P Y, et al. Coupling of self-supporting geopolymer membrane with intercepted Cr(III) for dye wastewater treatment by hybrid photocatalysis and membrane separation[J]. Applied Surface Science, 2020, 515: 146024.

[12] STROZI C M, COLOMBO P, RAYMUNDO M M. Geopolymer foams by gelcasting[J]. Ceramics International, 2014, 40(4): 5723-5730.

[13] STROZI C M, RAYMUNDO M M, COLOMBO P. Effect of process parameters on the physical properties of porous geopolymers obtained by gelcasting[J]. Ceramics International, 2014, 40(8): 13585-13590.

[14] KOHOUT J, KOUTNK P. Effect of filler type on the thermo-mechanical properties of metakaolinite-based geopolymer composites[J]. Materials (Basel, Switzerland), 2020, 13(10): 2395.

[15] PAN Z, SANJAYAN J G. Stress-strain behaviour and abrupt loss of stiffness of geopolymer at elevated temperatures[J]. Cement and Concrete Composites, 2010, 32(9): 657-664.

[16] ZHANG Z H, PROVIS J L, REID A, et al. Mechanical, thermal insulation, thermal resistance and acoustic absorption properties of geopolymer foam concrete[J]. Cement and Concrete Composites, 2015, 62: 97-105.

[17] 厉 超. 矿渣、高/低钙粉煤灰玻璃体及其水化特性研究[D]. 北京: 清华大学, 2011: 25-27.

[18] LIU Z, SHAO N N, HUANG T Y, et al. Effect of SiO2/Na2O mole ratio on the properties of foam geopolymers fabricated from circulating fluidized bed fly ash[J]. International Journal of Minerals, Metallurgy, and Materials, 2014, 21(6): 620-626.

[19] QIAO Y J, LI X Y, BAI C Y, et al. Effects of surfactants/stabilizing agents on the microstructure and properties of porous geopolymers by direct foaming[J]. Journal of Asian Ceramic Societies, 2021, 9(1): 412-423.

[20] ZHANG W M, PENG C, LIU D F, et al. Preparation of fused silica membrane with high performance for high temperature gas filtration by sealing and spray coating[J]. Ceramics International, 2019, 45(9): 11607-11614.

[21] BKE N, BIRCH G D, NYALE S M, et al. New synthesis method for the production of coal fly ash-based foamed geopolymers[J]. Construction and Building Materials, 2015, 75: 189-199.

[22] 童国庆, 张吾渝, 季港澳, 等. 粉煤灰地聚物强度特性及微观机理研究[J]. 硅酸盐通报, 2020, 39(6): 1835-1841.

[23] ZHENG K R, CHEN L, GBOZEE M. Thermal stability of geopolymers used as supporting materials for TiO2 film coating through sol-gel process: feasibility and improvement[J]. Construction and Building Materials, 2016, 125: 1114-1126.

[24] SUN Z Q, CUI H, AN H, et al. Synthesis and thermal behavior of geopolymer-type material from waste ceramic[J]. Construction and Building Materials, 2013, 49: 281-287.

[25] ZHOU W, YAN C J, DUAN P, et al. A comparative study of high- and low-Al2O3 fly ash based-geopolymers: the role of mix proportion factors and curing temperature[J]. Materials & Design, 2016, 95: 63-74.

[26] YANG Z T, MOCADLO R, ZHAO M X, et al. Preparation of a geopolymer from red mud slurry and class F fly ash and its behavior at elevated temperatures[J]. Construction and Building Materials, 2019, 221: 308-317.

[27] WANG X, RUAN J M, CHEN Q Y. Effects of surfactants on the microstructure of porous ceramic scaffolds fabricated by foaming for bone tissue engineering[J]. Materials Research Bulletin, 2009, 44(6): 1275-1279.

[28] CHENG Y H, YUN M L, AL-BAKRI A M M, et al. Thermal resistance variations of fly ash geopolymers: foaming responses[J]. Scientific Reports, 2017, 7(1): 1-11.

[29] JI Z H, LI M, SU L Y, et al. Porosity, mechanical strength and structure of waste-based geopolymer foams by different stabilizing agents[J]. Construction and Building Materials, 2020, 258: 119555.

[30] KONG D L Y, SANJAYAN J G, SAGOE C K. Factors affecting the performance of metakaolin geopolymers exposed to elevated temperatures[J]. Journal of Materials Science, 2008, 43(3): 824-831.

[31] HE P G, JIA D C, WANG M R, et al. Thermal evolution and crystallization kinetics of potassium-based geopolymer[J]. Ceramics International, 2011, 37(1): 59-63.

[32] LIANG D H, HUANG J G, ZHANG Y T, et al. Influence of dextrin content and sintering temperature on the properties of coal fly ash-based tubular ceramic membrane for flue gas moisture recovery[J]. Journal of the European Ceramic Society, 2021, 41(11): 5696-5710.

[33] ZHANG H B, LIU X L, JIANG Y, et al. Direct separation of arsenic and antimony oxides by high-temperature filtration with porous FeAl intermetallic[J]. Journal of Hazardous Materials, 2017, 338: 364-371.

[34] GUI W Y, SHI Z J, ZHANG Y, et al. Ti-40Al-10Nb-10Cr porous microfiltration membrane with hierarchical pore structure for particulate matter capturing from high-temperature flue gas[J]. Membranes, 2022, 12(2): 104.

陈曦平, 王诏田, 罗洪杰, 程岩, 吴林丽, 姜昊. 粉煤灰基多孔地聚物的结构及过滤性能[J]. 硅酸盐通报, 2023, 42(6): 2081. CHEN Xiping, WANG Zhaotian, LUO Hongjie, CHENG Yan, WU Linli, JIANG Hao. Structure and Filtration Performance of Fly Ash-Based Porous Geopolymer[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(6): 2081.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!