汤亚 1,2孙盛睿 2樊佳 1,2杨庆峰 3[ ... ]刘阳桥 2,*
作者单位
摘要
1 1.南京工业大学 材料科学与工程学院, 材料化学工程国家重点实验室, 南京210009
2 2.中国科学院 上海硅酸盐研究所, 上海200050
3 3.中国科学院 上海高等研究院, 上海201210
随着工业的快速发展, 相关制造领域排放的污水重金属铜离子污染愈发严重。与此同时, 催化领域对铜金属资源的需求却不断增加。本研究利用粉煤灰和改性剂聚乙烯亚胺(PEI)制备了低成本改性水合硅酸钙(PCSH), 用于吸附水溶液中的铜离子(Cu(II)), 并进一步碱处理固定于表面的Cu(II), 形成铜基活性材料用于有机污染物的催化降解。相比于未改性的样品(CSH), PCSH对Cu(II)的饱和吸附容量提高100%, 高达588 mg/g。研究发现, 这主要是因为添加PEI有利于形成较大的比表面积、优良的孔隙结构以及Cu(II)与-NH2之间的强络合。从PCSH获得的铜基催化剂呈现纺锤形多孔形貌, 作为催化剂分别用于活化过氧硫酸氢钾(PMS)氧化降解罗丹明B(RhB)和活化硼氢化钠(NaBH4)还原降解4-硝基苯酚(4-NP), 速率常数达到0.7135 /min (pH (7.0±0.3); [RhB]= 20 mg/L; [PMS]= 0.12 g/L; [催化剂]= 0.8 g/L)和11.47×10-3 /s (pH (11.0±0.3); [4-NP]= 10-4 mol/L; [NaBH4]= 5×10-3 mol/L; [催化剂]= 0.167 g/L), 是CSH催化剂体系的20和19倍。本工作利用固体废弃物粉煤灰实现了水溶液中铜元素的再利用, 为水中污染物的有效处理和利用提供了新启示。
粉煤灰 水合硅酸钙 铜离子吸附 聚乙烯亚胺 过氧硫酸氢钾 fly ash calcium silicate hydrate Cu(II) adsorption polyethyleneimine potassium peroxymonosulfate 
无机材料学报
2023, 38(11): 1281
白利忠 1,2,*王超男 1,2程俊 2赵梓彤 1[ ... ]李雪峰 1
作者单位
摘要
1 山西工程技术学院材料科学与工程系, 阳泉 045000
2 山西省阳泉市水文水资源勘测站, 阳泉 045000
对粉煤灰基多孔陶瓷的有效利用不但能够减少粉煤灰对环境的污染, 而且在废水处理等领域表现出较高的应用价值。本文以粉煤灰为主要原料, 膨润土为黏结剂, 活性炭为造孔剂, 采用直接成型烧结工艺制备了一种性能优异的多孔陶瓷材料, 并研究了烧结温度和活性炭用量对多孔陶瓷结构与性能的影响。结果表明, 粉煤灰/膨润土烧结形成陶瓷骨架, 活性炭氧化形成孔洞结构, 在两者协同作用下形成多孔陶瓷材料。随着烧结温度的升高和活性炭用量的减少, 多孔陶瓷材料的显气孔率和吸水率减小, 体积密度和抗压强度增大。当烧结温度为1 100 ℃和活性炭用量为60%(质量分数)时, 所制备的多孔陶瓷综合性能更优, 显气孔率为6175%, 体积密度为093 g·cm-3, 吸水率为 6348%, 抗压强度为429 MPa, 对浓度为100 mg·L-1的Pb2+溶液的去除率为984%, 饱和吸附量高达4579 mg·g-1。
粉煤灰 活性炭 多孔陶瓷 去除率 吸附量 fly ash activated carbon porous ceramics Pb2+ Pb2+ removal rate adsorption capacity 
硅酸盐通报
2023, 42(11): 4122
刘刚 1,2丁明巍 1,2刘金军 2万惠文 1[ ... ]蹇守卫 1,2
作者单位
摘要
1 武汉理工大学硅酸盐建筑材料国家重点实验室, 武汉 430070
2 武汉理工大学材料科学与工程学院, 武汉 430070
通过改变矿粉、粉煤灰、偏高岭土的配合比, 用复配后的水玻璃进行碱激发, 制备三元地聚物, 测试了三元地聚物凝结时间以及抗折、抗压强度。利用XRD、SEM、EDS及DTG研究硬化浆体中水化产物的形貌和成分, 并对水化过程进行分析。结果表明, 该三元地聚物是由原材料在碱激发水化作用下生成的以水化硅酸钙(C-S-H)、水化硅铝酸钙(C-A-S-H)和水化硅铝酸钠(N-A-S-H)凝胶为主的复合胶凝材料。矿粉掺量越高, 新拌浆体凝结时间越短, 水化产物中钙系凝胶越多, 试件强度越高。矿粉含量为10%、30%、50%、70%、90%(质量分数)的5组试件3 d抗压强度分别为2.1、14.1、24.2、29.7、37.9 MPa。养护龄期越长, 反应越完全, 水化产物越多, 试件抗压强度越高。当矿粉含量为50%时, 三元地聚物1、3、7、28 d抗压强度分别为12.3、24.2、27.3、36.8 MPa。当矿粉含量为90%、养护龄期为28 d时, 试件抗折、抗压强度最高, 分别为12.0、52.0 MPa。该体系较短的凝结时间使其在道路修补材料及3D打印等领域有着较为广阔的应用前景。
矿粉 粉煤灰 地聚物 强度 微观形貌 水化过程 slag fly ash geopolymer strength microstructure hydration process 
硅酸盐通报
2023, 42(6): 2106
陈曦平 1,*王诏田 1罗洪杰 1,2程岩 1[ ... ]姜昊 3
作者单位
摘要
1 东北大学冶金学院, 沈阳 110819
2 材料先进制备技术教育部工程研究中心, 沈阳 110819
3 抚顺天成环保科技有限公司, 抚顺 113001
目前, 工业除尘滤袋的工作温度不高于280 ℃, 通常在过滤前需先将高温烟气进行降温处理。为了制备高效且耐温性良好的新型过滤材料, 本文以粉煤灰为主要原料, 以H2O2为发泡剂, 通过聚合反应制备了多孔地聚物, 并对其形貌、孔结构、抗折强度和过滤性能进行了表征。结果表明: H2O2的最佳添加量为0.98%(质量分数), 此时多孔地聚物下表面与内部的平均孔径分别为17.3和171.5 μm, 孔隙率为56.2%, 常温下抗折强度为2.2 MPa, 过滤阻力为6.2×10-3 MPa, 对PM10和PM2.5的过滤效率分别为98.2%和93.3%, 经800 ℃的热处理后, 抗折强度增加到3.4 MPa, 对PM10和PM2.5的过滤效率均保持在90%以上, 过滤阻力增加了1×10-3 MPa。因此, 以粉煤灰基多孔地聚物作为高温烟气过滤材料具有良好的应用前景。
粉煤灰 多孔地聚物 高温处理 过滤性能 孔结构 抗折强度 fly ash porous geopolymer high temperature treatment filtering performance pore structure flexural strength 
硅酸盐通报
2023, 42(6): 2081
作者单位
摘要
贵州大学化学与化工学院,贵阳 550025
针对地质聚合物需水量大、黏度高的问题,研究了木质素磺酸钠(SL)、聚羧酸减水剂(PC)、萘系减水剂(N)、三聚氰胺系减水剂(M)对赤泥-粉煤灰基地质聚合物性能的影响。通过FTIR、XRD、SEM-EDS分析了减水剂在碱溶液中的稳定性及其对赤泥-粉煤灰基地质聚合物物相、形貌和结构等的影响。结果表明,在相同液固比情况下,四种减水剂均可提高浆体流动度,流动度提高幅度从大到小依次是N、M、SL、PC。掺量不高于原料质量的0.50%时,SL与N对抗压强度有改善作用,对抗压强度的影响由优到劣依次是N、SL、M、PC。减水剂的掺入不会改变地质聚合物的物相组成,SL与N在碱溶液中相对稳定,但是PC与M在碱溶液中的稳定性较差。SL、PC、N、M的最佳掺量分别为0.50%、0.75%、0.50%、0.50%(质量分数)。
地质聚合物 赤泥 粉煤灰 减水剂 流动度 抗压强度 凝结时间 geopolymer red mud fly ash water reducing agent fluidity compressive strength setting time 
硅酸盐通报
2023, 42(9): 3212
刘扬 1肖欣欣 1,2陈湘 1,2王柏文 1,2[ ... ]鲁乃唯 1
作者单位
摘要
1 长沙理工大学土木工程学院,长沙 410114
2 长沙理工大学桥梁工程安全控制教育部重点实验室,长沙 410114
为实现工业废料的二次利用,将电石渣部分替代粉煤灰掺入碱激发粉煤灰-矿渣(AAFS)中,制备碱激发粉煤灰-矿渣-电石渣复合凝胶材料(AAFSC)。本文考察了不同电石渣掺量下AAFSC的抗碳化性能,并通过压汞测试、热重分析、X射线衍射仪和扫描电子显微镜等分析材料的微观结构。结果表明:经快速碳化作用,AAFSC的孔隙结构会向有害孔发展,抗压强度明显衰减;AAFSC在碳化前中期的抗碳化性能优于AAFS,但随碳化龄期延长,这种优势逐渐减小甚至消失;试验推荐的电石渣掺量质量分数为6%,此时AAFSC在碳化前中期具备最佳抗碳化性能,且在碳化后期仍具有最大抗压强度39.92 MPa;随电石渣掺量增加,AAFSC中Ca(OH)2含量增加,这些Ca(OH)2在碳化过程中被消耗,生成了方解石、霰石等碳酸盐。
电石渣 粉煤灰 矿渣 碱激发 碳化 碱度 微观结构 carbide slag fly ash slag alkali activation carbonation alkalinity microstructure 
硅酸盐通报
2023, 42(9): 3204
作者单位
摘要
1 北京城建集团有限责任公司,北京 100088
2 北京科技大学冶金与生态工程学院,北京 100083
以石英粉作为参照,通过监测水化热、悬浮液pH值及凝结时间变化研究了粉煤灰和矿渣粉(GGBS)对磷酸镁水泥水化进程的影响,并测定了砂浆的抗压强度及硬化浆体的孔结构。结果表明,粉煤灰和矿渣粉对磷酸镁水泥的水化具有较强的延缓作用,且矿渣粉的缓凝效果更强。粉煤灰和矿渣粉能够改善硬化浆体的孔结构,其中矿渣粉的改善效果更为显著。在15%(质量分数)掺量下,单掺粉煤灰和矿渣粉的磷酸镁水泥砂浆2 h抗压强度都略高于纯磷酸镁水泥砂浆。掺粉煤灰的磷酸镁水泥砂浆后期抗压强度等于或略高于纯磷酸镁砂浆,掺矿渣粉的磷酸镁水泥砂浆后期抗压强度显著高于纯磷酸镁水泥砂浆。
粉煤灰 矿渣粉 磷酸镁水泥 水化进程 抗压强度 孔结构 fly ash GGBS magnesium phosphate cement hydration process compressive strength pore structure 
硅酸盐通报
2023, 42(7): 2472
作者单位
摘要
1 武汉理工大学材料科学与工程学院, 武汉 430070
2 武汉理工大学硅酸盐建筑材料国家重点实验室, 武汉 430070
为了研究循环流化床(CFB)飞灰对泡沫混凝土性能的影响,选择两种不同的CFB飞灰以及普通粉煤灰(FA),通过测量泡沫混凝土的抗压强度、流动度、孔结构和吸水率,研究飞灰掺量和种类对泡沫混凝土性能的影响,并通过扫描电子显微镜和X射线衍射仪对泡沫混凝土的微观形貌和物相组成进行表征。结果表明,CFB飞灰较高的硫钙含量和不规则的颗粒形貌会对泡沫混凝土的工作性造成不良影响。掺入低硫钙型CFB飞灰时,泡沫混凝土的强度随着CFB飞灰掺量增加而提高,50%(质量分数,下同)掺量时,7和28 d抗压强度均达到最大值,分别为130和225 MPa;掺入高硫钙型CFB飞灰时,泡沫混凝土的强度随着CFB飞灰掺量增加呈先增加后降低的趋势,7和28 d抗压强度分别在CFB飞灰掺量20%和10%时达到最大值,分别为1.42和2.00 MPa。CFB飞灰水化过程中生成的钙钒石和C-S-H凝胶能够填充孔隙,增加小孔占比,降低孔隙率,有利于泡沫混凝土抗压强度的提高和吸水率的降低。
泡沫混凝土 CFB飞灰 钙钒石 抗压强度 微观形貌 foam concrete CFB fly ash ettringite compressive strength micromorphology 
硅酸盐通报
2023, 42(7): 2447
作者单位
摘要
1 中铁十九局集团第六工程有限公司,无锡 214028
2 江苏省建筑业企业技术中心,无锡 214028
3 江苏省装配式建筑绿色智慧制造及施工工程技术研究中心,无锡 214028
4 淮阴工学院道路桥梁与渡河工程系,淮安 223003
为研究纤维增强轻骨料混凝土抗疲劳性能,开展了恒应力循环压缩试验,对疲劳应力-应变响应进行了研究。试验采用质量分数为20%的粉煤灰和50%的粒化高炉矿渣部分替代水泥,变量为单掺或混掺不同掺量的钢纤维和聚乙烯醇(PVA)纤维。结果表明:随着循环加载次数的增加,钢纤维混凝土的宏观裂纹数量比PVA纤维混凝土多,试件的破坏形态表现为轻骨料的破裂和纤维的渐进拔出(钢纤维)或断裂(PVA纤维);钢纤维混凝土的疲劳应变及残余应变均最大,而混杂纤维混凝土的最小;在同一应力水平下,混杂纤维混凝土的疲劳寿命最长,而钢纤维混凝土的最短;钢纤维混凝土的极限疲劳损伤高于PVA纤维混凝土和混杂纤维混凝土,且随最大应力水平的降低,该差异逐渐缩小。
轻骨料混凝土 粉煤灰 高炉矿渣 钢纤维 PVA纤维 抗疲劳性能 疲劳寿命 lightweight aggregate concrete fly ash blast furnace slag steel fiber PVA fiber fatigue resistance fatigue life 
硅酸盐通报
2023, 42(8): 2856
作者单位
摘要
1 青岛理工大学土木工程学院,青岛 266520
2 中铁通信信号勘测设计院有限公司,北京 100083
3 住房和城乡建设部科技与产业化发展中心,北京 100083
软土承载力低,工程特性较差,无法直接作为地基进行工程建设,此外我国工业废渣产量巨大,且利用率较低,为推动高质量发展要求,本文采用粉煤灰作为前驱体,电石渣、硫酸钠作为激发剂,研究软土的固化机理与微观结构发展。结果表明,最优配合比为粉煤灰掺量17.3%(质量分数,下同)、电石渣掺量7.3%、硫酸钠掺量5.0%。最优配合比下固化土7和28 d无侧限抗压强度分别为2 474.0和3 134.0 kPa,与预测强度相比误差较小,响应面法优化配比具备有效性和科学性。固化土7和28 d水稳系数分别为0.73和0.85,固化土具有较好的抗水侵蚀能力。28 d固化土水化产物主要为水化硅酸钙(C-S-H)和钙矾石(AFt),二者填充、包裹固化土内部孔隙,固化土微观结构逐渐密实,力学性能得到提高。
地质聚合物 粉煤灰 电石渣 响应面法 配合比优化 geopolymer fly ash carbide slag response surface method mix ratio optimization 
硅酸盐通报
2023, 42(8): 2821

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!