作者单位
摘要
1 1.西安科技大学 化学与化工学院, 西安 710054
2 2.陕西能源职业技术学院 煤炭与化工产业学院, 咸阳 712000
3 3.西安石油大学 化学化工学院, 西安 710065
Cu/Mg-MOF-74具有比表面积高、微孔结构和碱金属活性位点可调、CO2吸附性能及光催化活性优良等优点, 但其Cu与Mg物质的量比(简称: Cu/Mg比)对烟气中CO2吸附选择性影响机制尚不清晰。本研究采用溶剂热法合成了不同Cu/Mg比的Cu/Mg-MOF-74, 表征了其CO2光催化性能、CO2和N2吸附量及孔结构, 计算了Cu/Mg-MOF-74的CO2吸附选择性, 并分析了Cu/Mg比对吸附量、选择性影响机制。结果表明:随着Cu/Mg比减小, Cu/Mg-MOF-74光催化CO2还原为CO和H2的活性先增后减, 当Cu/Mg比为0.6/0.4时, 其光催化还原CO和H2产率最大, 分别为10.65和5.41 μmol·h−1·gcat−1(1 MPa, 150 ℃); 随着Cu/Mg比减小, CO2、N2在Cu/Mg-MOF-74上的吸附量增加, 且CO2吸附量增加显著, 当Cu/Mg比为0.1/0.9时, 其CO2、N2吸附量最大, 分别为9.21、1.49 mmol·g−1(273.15 K, 100 kPa); 随着Cu/Mg比减小, Cu/Mg-MOF-74的微孔(d1≥0.7 nm)、超微孔(d2<0.7 nm)的面积、体积均增加, 当Cu/Mg比为0.22/0.78时, 其微孔、超微孔的面积、体积均大于Mg-MOF-74; 其选择性随Cu/Mg比减小和CO2浓度增大而改善。CO2在Cu/Mg-MOF-74上的吸附作用包括微孔填充和Mg2+化学吸附, 微孔体积是影响其吸附性能的关键。调整Cu/Mg比可调控Cu/Mg-MOF-74的孔结构、CO2吸附量和选择性。
Cu/Mg-MOF-74 CO2 吸附 选择性 孔结构 光催化 Cu/Mg-MOF-74 CO2 adsorption selectivity pore structure photocatalysis 
无机材料学报
2023, 38(12): 1379
作者单位
摘要
1 深圳大学土木与交通工程学院, 深圳 518060
2 低品位难处理黄金资源综合利用国家重点实验室, 龙岩 364200
中和渣(NS)是矿物开采和冶金处理过程中生成的以硫酸钙为主要成分的工业废渣, 中和渣大量堆积储存会给环境带来巨大威胁, 因此, 迫切需要探索一种回收利用中和渣的新技术。研究了不同粒化高炉矿渣掺量的中和渣基地质聚合物的力学性能, 并通过X射线衍射测试、反应热测试、压汞测试、傅里叶变换红外光谱测试和扫描电子显微镜测试等手段, 对中和渣基地质聚合物的物相组成、水化速率、孔结构及微观形貌进行了表征。结果表明: 在激发剂作用下, 中和渣与粒化高炉矿渣间地质聚合反应的主要产物为C(N)-A-S-H凝胶。粒化高炉矿渣的掺入可提高聚合反应速率, 生成更多的地质聚合物凝胶, 使得中和渣基地质聚合物微观结构更致密, 力学性能也更高。粒化高炉矿渣掺量为30%(质量分数)的中和渣基地质聚合物28 d抗压强度可达178 MPa。
地质聚合物 中和渣 粒化高炉矿渣 抗压强度 孔结构 微观结构 geopolymer neutralization slag granulated blast furnace slag compressive strength pore structure microstructure 
硅酸盐通报
2023, 42(11): 3978
作者单位
摘要
长沙理工大学土木与建筑学院, 长沙 410114
地聚物是通过化学激发生成的具有低碳属性的新型胶凝材料, 具有部分取代水泥的巨大潜力。本文通过压汞试验表征了偏高岭土-矿渣地聚物净浆及砂浆的孔隙结构, 分析了液固比、砂体积分数等因素对孔结构特性的影响, 明确了孔结构特性与面分形维数的相关性。采用氯离子非稳态电迁移试验、非稳态自然扩散试验和水分扩散试验, 研究了偏高岭土-矿渣地聚物净浆与砂浆的抗渗透性能, 分析了液固比、砂体积分数及孔面分形维数与浆体介质传输性能的相关性。结果表明: 随着液固比增大, 地聚物净浆的孔隙率和最可几孔径均增大, 抗渗透性能降低; 地聚物砂浆的抗渗透性能优于水泥砂浆, 砂体积分数增加时, 地聚物砂浆的最可几孔径和介质传输系数均先减小后增大, 抗渗透性能先增强后减弱; 孔面分形维数能较好地表征地聚物浆体孔结构特性, 并与抗渗透性能相关性良好。
碱激发胶凝材料 地聚物 氯离子 渗透性 孔结构 分形维数 alkali-activated cementitious material geopolymer chloride permeability pore structure fractal dimension 
硅酸盐通报
2023, 42(6): 2092
陈曦平 1,*王诏田 1罗洪杰 1,2程岩 1[ ... ]姜昊 3
作者单位
摘要
1 东北大学冶金学院, 沈阳 110819
2 材料先进制备技术教育部工程研究中心, 沈阳 110819
3 抚顺天成环保科技有限公司, 抚顺 113001
目前, 工业除尘滤袋的工作温度不高于280 ℃, 通常在过滤前需先将高温烟气进行降温处理。为了制备高效且耐温性良好的新型过滤材料, 本文以粉煤灰为主要原料, 以H2O2为发泡剂, 通过聚合反应制备了多孔地聚物, 并对其形貌、孔结构、抗折强度和过滤性能进行了表征。结果表明: H2O2的最佳添加量为0.98%(质量分数), 此时多孔地聚物下表面与内部的平均孔径分别为17.3和171.5 μm, 孔隙率为56.2%, 常温下抗折强度为2.2 MPa, 过滤阻力为6.2×10-3 MPa, 对PM10和PM2.5的过滤效率分别为98.2%和93.3%, 经800 ℃的热处理后, 抗折强度增加到3.4 MPa, 对PM10和PM2.5的过滤效率均保持在90%以上, 过滤阻力增加了1×10-3 MPa。因此, 以粉煤灰基多孔地聚物作为高温烟气过滤材料具有良好的应用前景。
粉煤灰 多孔地聚物 高温处理 过滤性能 孔结构 抗折强度 fly ash porous geopolymer high temperature treatment filtering performance pore structure flexural strength 
硅酸盐通报
2023, 42(6): 2081
作者单位
摘要
1 桂林理工大学土木与建筑工程学院, 桂林 541004
2 广西路桥工程集团有限公司, 南宁 530011
随着我国基础建设的不断推进, 对混凝土材料的要求也越来越高, 高吸水性树脂(SAP)作为一种新型内养生材料具有重量轻、吸水保水性好、受压后不易脱水等优点, 受到越来越多国内外学者的关注。为了探究SAP内养生混凝土力学行为及抗氯离子渗透性能, 制备了不同掺量和粒径的SAP混凝土进行试验, 并借助核磁共振(NMR)与扫描电子显微镜(SEM)观察与分析SAP混凝土内部微观孔结构。结果发现, 掺入SAP明显地降低了混凝土的早期强度, 相较于基准组3 d强度最高降低可达25%, 但对中后期强度影响较小。SAP的掺入对混凝土内部孔结构的影响明显, 随着养护龄期的增长, SAP的内养护作用逐渐发挥, 孔隙结构得到明显优化。SAP的掺入提高了混凝土的抗氯离子渗透能力, 相较于基准组56 d抗渗性能最高提升38%, 通过BP神经网络拟合可以较好地对氯离子扩散系数进行预测。
内养生混凝土 混凝土强度 孔结构 耐久性 BP神经网络 internal curing concrete strength of concrete pore structure durability BP neural network 
硅酸盐通报
2023, 42(6): 2027
作者单位
摘要
1 内蒙古工业大学土木工程学院, 呼和浩特 010051
2 内蒙古工业大学理学院, 呼和浩特 010051
3 内蒙古建筑职业技术学院艺术设计学院, 呼和浩特 010070
孔结构演化对混凝土抗冻性能至关重要, 为研究纳米TiO2对混凝土孔结构及抗冻性能的影响, 本文选取替代率分别为0%、1%、3%、5%(质量分数, 下同)的纳米TiO2混凝土为研究对象, 进行了快冻法试验、抗压强度试验、核磁共振试验及扫描电子显微镜试验。通过纳米TiO2混凝土冻融循环前后质量、动弹模量、抗压强度、孔结构及微观形貌的变化, 评估-18~5 ℃条件下的冻融损伤并分析纳米TiO2对混凝土性能的改善机理; 同时建立抗压强度、相对动弹模量、自由水饱和度及裂缝占比响应模型以确定纳米TiO2的最佳掺量。结果表明: 适量的纳米TiO2可有效改善混凝土微观形貌, 增加混凝土微孔及中孔的比例, 减小大孔及裂缝的比例, 过量的纳米TiO2会使混凝土中大孔和裂缝的比例增大, 不利于混凝土抗冻性能的提高; 纳米TiO2掺量为1%时, 混凝土抗冻性能最佳。基于抗冻性能指标与孔隙测试结果建立响应模型, 确定纳米TiO2最佳掺量接近1%, 这与试验结果相符合。
纳米TiO2 混凝土 抗冻性能 核磁共振 孔结构 响应面分析 nano-TiO2 concrete frost resistance nuclear magnetic resonance pore structure response surface analysis 
硅酸盐通报
2023, 42(6): 2015
张涛 1王腾 1张琰 2谭洪波 3[ ... ]董超 2
作者单位
摘要
1 国网山东省电力公司,潍坊供电公司,潍坊 261000
2 中国电力科学研究院有限公司,北京 100192
3 武汉理工大学硅酸盐建筑材料国家重点实验室,武汉 430070
为解决钢筋混凝土氯离子侵蚀难题,研究了不同掺量矿渣微粉对水泥净浆工作性能、力学性能和氯离子固化性能的影响,并通过物相分析、热重分析、孔结构分布和热力学模拟等方法对氯离子固化机理进行表征分析。结果表明:矿渣微粉能够改善水泥基材料的工作性能,有效提升水泥净浆后期抗压强度和氯离子固化能力,掺量为30%(质量分数)时综合性能最佳;矿渣微粉能够化学结合氯离子,促进体系生成Friedel盐和Kuzel盐,并且能够发生火山灰效应提升C-S-H凝胶含量,细化硬化浆体孔隙结构,提升密实度;水泥净浆氯离子固化能力受氯离子化学结合、物理吸附和阻迁能力共同作用,随着矿渣微粉掺量增加,水泥净浆氯离子化学结合和物理吸附能力逐渐增强,而阻迁能力存在最优掺量。本研究为矿渣微粉水泥基材料在远海岛礁工程建设中的应用提供技术支持和理论支撑。
矿渣微粉 水泥净浆 氯离子固化 物相组成 孔结构 热力学模拟 GGBS cement paste chloride binding phase composition pore structure thermodynamic simulation 
硅酸盐通报
2023, 42(9): 3240
作者单位
摘要
中国建筑材料科学研究总院有限公司,北京 100024
低热硅酸盐水泥具有高温下强度稳定增长的特性,本文以硅酸盐水泥和低热硅酸盐水泥互为对比,研究了在水泥砂浆成型之后直接进行热养护(50~80 ℃)和标准养护1 d后再进行热养护两种情况下的强度发展和水泥浆体的物相组成、孔隙发展、微观形貌特征。结果表明:高温条件下水泥强度损伤行为源于水化后期的微结构劣化,但这一行为与水化初期受热密切相关,低热硅酸盐水泥在高温下较低的水化速率使其水化产物更均匀、密实,浆体的孔结构不随温度的升高以及受热方式的改变出现明显劣化,因此其强度在高温下仍能保持稳定增长;硅酸盐水泥后期由高温引发的钙矾石分解并没有直接导致强度倒缩,但水化初期过高的水化速率使水泥浆体出现更多的孔洞和缺陷,加速了后期由高温引起的单硫型水化硫铝酸钙(AFm)、Ca(OH)2析出与生长,且诱发浆体孔隙率增大。
低热硅酸盐水泥 养护温度 水化产物 孔结构 微观形貌 low-heat Portland cement curing temperature hydration product pore structure micromorphology 
硅酸盐通报
2023, 42(9): 3100
郭政 1,2穆松 1,2庄智杰 1,2张浩 1,2张蕾 3
作者单位
摘要
1 江苏省建筑科学研究院有限公司,高性能土木工程材料国家重点实验室,南京 211103
2 江苏苏博特新材料股份有限公司,南京 211108
3 中铁第一勘察设计院集团有限公司,西安 710043
构建低真空运行环境以减小空气阻力和噪声的真空管道磁悬浮高速列车系统,是高速轨道交通技术发展的重要方向。混凝土作为水泥基材料的重要代表,是真空磁悬浮管线方案中的重要备选结构材料,需应对真空服役环境的新挑战。本文总结了中/高度真空环境对硬化水泥浆体水化产物特征峰的影响,中/高度真空环境对水泥基材料水分传输、收缩变形和孔结构的影响,以及中/高度真空环境下水泥基材料力学性能变化规律。最后对水泥基材料在真空环境下的应用方向进行了讨论与展望,以期为开发适用于真空环境的高性能水泥基材料提供借鉴与参考。
水泥基材料 真空 水化产物 孔结构 力学性能 cement-based material vacuum hydration product pore structure mechanical property 
硅酸盐通报
2023, 42(9): 3075
作者单位
摘要
1 北京城建集团有限责任公司,北京 100088
2 北京科技大学冶金与生态工程学院,北京 100083
以石英粉作为参照,通过监测水化热、悬浮液pH值及凝结时间变化研究了粉煤灰和矿渣粉(GGBS)对磷酸镁水泥水化进程的影响,并测定了砂浆的抗压强度及硬化浆体的孔结构。结果表明,粉煤灰和矿渣粉对磷酸镁水泥的水化具有较强的延缓作用,且矿渣粉的缓凝效果更强。粉煤灰和矿渣粉能够改善硬化浆体的孔结构,其中矿渣粉的改善效果更为显著。在15%(质量分数)掺量下,单掺粉煤灰和矿渣粉的磷酸镁水泥砂浆2 h抗压强度都略高于纯磷酸镁水泥砂浆。掺粉煤灰的磷酸镁水泥砂浆后期抗压强度等于或略高于纯磷酸镁砂浆,掺矿渣粉的磷酸镁水泥砂浆后期抗压强度显著高于纯磷酸镁水泥砂浆。
粉煤灰 矿渣粉 磷酸镁水泥 水化进程 抗压强度 孔结构 fly ash GGBS magnesium phosphate cement hydration process compressive strength pore structure 
硅酸盐通报
2023, 42(7): 2472

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!