作者单位
摘要
1 1.上海大学 材料科学与工程学院, 上海 200444
2 2.中国科学院 上海硅酸盐研究所, 上海 200050
3 3.上海理工大学 材料与化学学院, 上海 200093
具备良好成骨性能和降解速率的生物陶瓷骨组织工程支架在骨修复领域极具应用潜力。镁黄长石(Ca2MgSi2O7)因其具有良好的力学性能、生物降解能力以及促成骨性能而备受关注。本研究以硅树脂为聚合物前驱体、碳酸钙与氧化镁为活性填料制备打印浆料, 采用挤出式3D打印技术在室温条件下制备支架素坯, 并在惰性气氛下高温烧结制备了镁黄长石生物陶瓷支架, 并对比研究了镁黄长石支架与斜硅钙石(Ca2SiO4)、镁橄榄石(Mg2SiO4)支架在结构、抗压强度、体外降解能力以及体外生物学性能等方面的差异。结果表明: 镁黄长石支架与斜硅钙石、镁橄榄石支架具有相似的三维多孔结构, 抗压强度、降解速率介于镁橄榄石和斜硅钙石之间, 但促进骨髓间充质干细胞的成骨基因表达能力显著强于镁橄榄石和斜硅钙石支架。本研究证实采用3D打印制备的镁黄长石支架有望作为骨组织工程较理想的支架。
聚合物前驱体 3D打印 生物陶瓷 polymer precursor 3D printing bioceramics 
无机材料学报
2023, 38(7): 763
作者单位
摘要
1 上海理工大学材料与化学学院,上海 200093
2 中国科学院上海硅酸盐研究所,上海 200050
CaO-SiO2-P2O5体系生物玻璃微球在骨修复材料领域具有应用前景。适量铈离子可赋予生物玻璃抗氧化、抗炎、促血管生成等功能特性。通过喷雾干燥法制备了不同铈离子含量的生物玻璃(Ce-BG)微球粉体材料,研究了Ce含量对Ce-BG微球的物相组成、降解性能以及体外生物活性的影响。结果表明:Ce-BG微球表面光滑,球形度高,元素分布均匀;BG微球中添加Ce会生成CePO4及CeO2相,且随Ce含量提高,Ce-BG微球降解速率变慢,降解产物引起环境pH值升高逐渐减缓。Ce与Ce+Ca的摩尔比为0.03:1.00的Ce-BG微球浸泡在Tris-HCl缓冲液中7 d后pH值最低。不同Ce含量的Ce-BG微球都具有良好的体外诱导磷灰石沉积的能力。
生物玻璃  喷雾干燥 微球 bioglass cerium spray drying microspheres 
硅酸盐学报
2023, 51(10): 2527
舒朝琴 1,2朱敏 1,*朱钰方 2,*
作者单位
摘要
1 1.上海理工大学 材料与化学学院, 上海 200093
2 2.中国科学院 上海硅酸盐研究所 高性能陶瓷与超微结构国家重点实验室, 上海 200050
生物活性陶瓷骨修复材料虽然具有优异的成骨性能, 但缺乏抗氧化应激的能力, 妨碍骨修复进程。本研究以β相磷酸三钙(β-TCP)粉体为原料, 采用LiCl-KCl熔盐体系, 以六水合氯化钴(CoCl2·6H2O)为钴源, 利用熔盐法制备出含钴氯磷灰石(Co-MS-TCP)。通过Co-MS-TCP粉体清除过氧化氢(H2O2)分析了含钴氯磷灰石的抗氧化能力; 通过细胞活性、胞内活性氧(ROS)含量变化评价了材料的细胞相容性和细胞水平抗氧化性能。结果表明, 熔盐处理β-TCP粉体能够制备含钴氯磷灰石, 钴含量随CoCl2·6H2O加入量增加而增大; H2O2清除能力随氯磷灰石中钴含量的增加而增强, 6 h内对H2O2的清除率可达90%以上。细胞实验证实, 含钴氯磷灰石具有良好的细胞相容性和抗氧化性能, 1.5 mg·mL-1加3% Co盐的MS-TCP (3%Co-MS-TCP)即可保证软骨细胞和骨髓间充质干细胞存活率大于85%, 并且3% Co-MS-TCP可有效清除H2O2, 使得细胞内ROS含量显著降低。因此, 通过熔盐法制备含钴生物活性陶瓷是实现抗氧化应激的一种有效途径, 这也为开发催化活性高、生物相容好的功能化生物活性陶瓷提供了新的策略。
生物活性陶瓷 熔盐法  抗氧化 bioactive ceramics molten salt method cobalt anti-oxidation 
无机材料学报
2022, 37(11): 1225
吴爱军 1,2朱敏 1,*朱钰方 2,*
作者单位
摘要
1 1.上海理工大学, 材料与化学学院, 上海 200093
2 2.中国科学院 上海硅酸盐研究所 高性能陶瓷与超微结构国家重点实验室, 上海 200050
为了清除皮肤肿瘤手术切除后的残余肿瘤细胞并促进皮肤伤口愈合, 开发一种具有肿瘤治疗和促进皮肤伤口愈合功能的水凝胶具有重要意义。本研究以水合硅酸钙纳米线为基体材料, 以NaCl和KCl为熔盐介质, CuSO4•5H2O为铜源, 采用熔盐法制备了含铜硅酸钙(Cu-CS)纳米棒, 并将其复合到海藻酸钠水凝胶得到Cu-CS纳米棒复合水凝胶(Cu-CS/SA)。实验结果表明, 随着铜盐添加量增大和熔盐处理温度升高, Cu-CS纳米棒的Cu含量逐渐上升, 但其催化过氧化氢(H2O2)生成羟基自由基(•OH)的性能呈现先升高后下降的趋势; 在3%铜盐添加量和熔盐处理温度700 ℃条件下所制备的3Cu-CS纳米棒具有最佳的催化性能, Cu元素均匀地分布在纳米棒表面, 其价态为+2价, 且Cu元素的含量极低, 仅为0.61%。细胞实验发现Cu-CS纳米棒含量不超过20%的复合水凝胶具有良好的生物相容性, 并且Cu- CS/SA水凝胶在模拟肿瘤微环境条件下能催化H2O2生成高细胞毒性的•OH, 进而实现化学动力学治疗肿瘤的效果, 同时还能促进血管内皮细胞和成纤维细胞的增殖和迁移。因此, Cu-CS纳米棒复合水凝胶有望用于皮肤肿瘤术后治疗。
熔盐法 含铜硅酸钙纳米棒 水凝胶 化学动力学治疗 皮肤伤口愈合 molten salt method copper-incorporated calcium silicate nanorods hydrogel chemodynamic therapy skin wound healing 
无机材料学报
2022, 37(11): 1203
作者单位
摘要
金属有机框架因具有多孔结构、高比表面积、丰富的官能团和金属活性位点以及良好的生物相容性和降解性而被广泛应用于生物医学领域。本研究提出以卟啉基金属有机框架纳米颗粒(PCN-224)为载体负载高化学价态的高铁酸钾氧化剂(K2FeO4, Fe(VI)), 经牛血清蛋白(BSA)包覆表面制备多功能复合纳米颗粒(Fe(VI)@PCN@BSA), 用于肿瘤光-化学动力学联合治疗。实验结果表明, PCN-224纳米颗粒粒径约为90 nm, 而Fe(VI)@PCN@BSA纳米颗粒粒径约为100 nm。Fe(VI)@PCN@BSA纳米颗粒在模拟肿瘤微环境条件下能够催化H2O2反应, 产生有细胞毒性的?OH而实现化学动力学效应, 同时也能够氧化分解部分H2O2产生O2, 在660 nm激光照射下提高单线态氧(1O2)产生量, 增强光动力学效应。进一步细胞实验证实Fe(VI)@PCN@BSA纳米颗粒具有较好的生物相容性, 能够获得增强的光-化学动力学联合治疗肿瘤效果。因此, Fe(VI)@PCN@BSA纳米颗粒在肿瘤治疗方面具有潜在的应用前景。
金属有机框架 高铁酸钾 肿瘤微环境 联合治疗 metal-organic framework potassium ferrate tumor microenvironment combination therapy 
无机材料学报
2021, 36(12): 1305
杨劢 1,3朱敏 1陈雨 2,*朱钰方 1,3,*
作者单位
摘要
1 1.上海理工大学 材料科学与工程学院, 上海 200093
2 2.上海大学 生命科学学院, 上海 200444
3 3.中国科学院 上海硅酸盐研究所, 上海 200050

光学治疗作为一种肿瘤治疗策略具有微创、毒副作用小、治疗效率高等优势而得到广泛研究, 但单一光学治疗并不能完全消除肿瘤。新兴的二维纳米材料在光学治疗领域的优势引起了广泛关注。本研究探索了金属磷三硫族元素化合物FePS3纳米片的制备及其多功能光学治疗性能。采用高温固相法合成FePS3块体并通过超声协助的液相剥离法得到FePS3纳米片, 该纳米片的平均水合粒径小于200 nm (平均153 nm), 对1064 nm激光的光热转换效率为19.7%, 且能在660 nm激光辐照下产生活性氧。细胞实验结果表明, FePS3纳米片具有良好的光热治疗和光动力学治疗效果。因此, FePS3纳米片可同时作为光热剂和光敏剂获得光热-光动力学联合治疗肿瘤功能, 肿瘤治疗应用潜力较大。

二维纳米材料 FePS3纳米片 光学治疗 联合治疗 two-dimensional nanomaterial FePS3 nanosheet phototherapy combined therapy 
无机材料学报
2021, 36(10): 1074
吴重草 1,2,3郇志广 2,3朱钰方 2,3吴成铁 2,3,*
作者单位
摘要
1 1.上海大学 材料科学与工程学院, 上海 200444
2 2.中国科学院 上海硅酸盐研究所, 高性能陶瓷与超微结构国家重点实验室, 上海200050
3 3.中国科学院大学 材料科学与光电工程研究中心, 北京 100049
生物材料表面微结构对于成骨具有重要的影响, 该研究以不同粒径(< 60 μm)的羟基磷灰石(HA)微球状粉体为原料, 通过3D打印技术制备了一系列(HA0、HA10、HA30、HA50)生物陶瓷支架。不同支架具有相似的理化性能, 由于微球粒径不同形成了不同的微结构, 对其生物学性能造成不同的影响。相比传统非微球颗粒打印的支架(HA0), HA微球构成的支架能够提供更多细胞粘附和生长位点, 24 h的粘附实验显示HA30支架能显著促进骨髓间充质干细胞的伪足伸长; 培养5 d的细胞增殖实验显示, 微球支架上的细胞数量与HA0支架出现显著性差异, 表面微球结构与细胞尺度相当的HA30支架具有最好的促增殖效果。因此, 3D打印技术在可控制备HA支架宏观结构的同时, 还可以通过控制生物陶瓷粉体的颗粒形貌, 调控3D打印支架的表面微结构, 从而优化其生物学效应, 在骨组织工程领域具有良好的应用前景。
HA微球 3D打印 支架 骨组织工程 hydroxyapatite microspheres 3D printing scaffolds bone tissue engineering 
无机材料学报
2021, 36(6): 601
作者单位
摘要
1 上海理工大学 材料科学与工程学院, 上海 200093
2 黄冈师范学院 化学化工学院, 催化材料制备及应用湖北省重点实验室, 黄冈 438000
3 中国科学院 上海硅酸盐研究所, 上海 200050
有机/无机杂化的介孔有机硅纳米颗粒因其高的比表面积、丰富的介孔孔道、功能性的骨架以及高的药物装载量等特点而在生物医学领域受到广泛关注。本研究提出以二硫键桥接的有机/无机杂化介孔有机硅纳米颗粒为载体共装载化疗药物和光热剂, 设计制备以DNA分子作为控释“开关”修饰介孔有机硅纳米颗粒的纳米递送系统(ICG/DOX-MONs @DNA20)。该纳米递送系统结合了光热剂的光热效应以及DNA分子随温度升高而从颗粒表面脱附的特性, 可实现近红外光照射激发药物在肿瘤细胞中的控制释放, 同时获得药物化疗-光热联合治疗肿瘤的效果。实验结果表明, 纳米递送系统在近红外光照下能迅速升温至43 ℃以上的热疗温度, 而且在37 ℃条件下6 h内仅缓慢释放药物12.3%, 而当温度升至43 ℃时则快速释放药物52.4%; 细胞实验显示该纳米递送系统能够被HeLa肿瘤细胞吞噬, 在近红外光照下有明显的药物化疗-光热联合治疗效果。因此, ICG/DOX-MONs@DNA20纳米递送系统在药物化疗-光热联合治疗肿瘤方面具有应用前景。
介孔有机硅 纳米载体 控制释放 联合治疗 mesoporous organosilica nanocarriers controlled release synergistic therapy 
无机材料学报
2020, 35(12): 1365
徐东 1,2朱钰方 1,2郑元义 3罗宇 2,4,*陈航榕 2,*
作者单位
摘要
1 上海理工大学 材料科学与工程学院, 上海 200093
2 中国科学院 上海硅酸盐研究所, 上海 200050
3 上海交通大学附属第六人民医院 上海超声医学研究所, 上海 200233
4 同济大学 化学科学与工程学院, 上海 200092
过高温可诱发肿瘤周围正常组织产生炎症以及热辐射损伤。因此研发一种能在相对较低温度下(例如43 ℃)即可实现肿瘤细胞高致死率的磁性材料对于磁热治疗的临床应用至关重要。本研究聚焦低温、安全、高效磁热疗, 选取FDA批准的液固相变材料聚乳酸-羟基乙酸(PLGA)为原料, 装载一步温和还原法制备得到的超顺磁性氧化铁纳米颗粒, 用于磁共振成像和磁热升温; 进一步在PLGA中装载热休克蛋白HSP90的小分子抑制剂-表没食子儿茶素没食子酸酯(EGCG), 抑制机体受热保护功能, 实现较低温度下杀死肿瘤细胞。体外实验结果表明, 制备得到的超顺磁性氧化铁纳米颗粒不仅拥有良好的T2加权成像性能, 还具有优良的磁热升温性能。所制备的PLGA/Fe3O4/EGCG复合材料在交变磁场下控制升温至43 ℃并保温40 min后发现肿瘤细胞死亡率达70%, 显示出针对骨肉瘤低温磁热治疗的良好潜力。这种可注射磁热相变材料将为骨肉瘤的治疗提供新的思路和材料支撑。
可注射 液固相变 低温磁热 磁共振成像 骨肉瘤 injectable liquid-solid phase transition low temperature magnetocaloric therapy magnetic resonance imaging osteosarcoma 
无机材料学报
2020, 35(11): 1277
作者单位
摘要
1 上海理工大学 材料科学与工程学院, 上海 200093
2 黄冈师范学院 化学化工学院, 催化材料制备及应用湖北省重点实验室, 湖北 438000
CaO-SiO2-P2O5体系生物玻璃(Bioglass, BG)微球具有良好的生物活性和骨传导性, 在骨组织修复领域得到广泛研究与应用。传统熔融法制备BG粉体的能耗大、粉体形貌不可控、生物活性相对较低; 溶胶-凝胶法制备BG粉体则需大量溶剂、制备周期长、不易量产。为快速、规模化制备形貌、粒径、化学组成可控的BG微球, 本研究以水溶液为溶剂, 以正硅酸四乙酯、磷酸三乙酯、四水硝酸钙为原料, 采用喷雾干燥前驱体溶液方法制备BG微球, 探讨喷雾干燥过程中进气风量、前驱体溶液浓度和进料速率等工艺参数对BG微球粒径的影响; 前驱体溶液化学组成对BG微球的体外诱导磷灰石沉积能力的影响。结果表明, BG微球的粒径范围在40 μm以下可控, 且粒径随前驱体溶液浓度增大而增大, 随进气风量增大而减小, 进料速率则对微球粒径影响较小。不同化学组成的BG微球都具有良好的体外诱导磷灰石沉积能力, 而且随CaO含量的增加而提高。
喷雾干燥 生物玻璃 微球 磷灰石 spray drying bioglass microsphere apatite 
无机材料学报
2020, 35(11): 1268

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!