作者单位
摘要
1 浙江农林大学光机电工程学院, 浙江 杭州 311300
2 江西农业大学工学院, 江西 南昌 330045
食用油是日常饮食的必需品, 可以为人体提供热能和脂肪酸, 是促进脂溶性维生素吸收的重要有机物。 随着人们生活水平的提高, 高档食用油已走进大众百姓的餐桌, 并深受欢迎和喜爱。 由于高档食用油市场售价高, 一些不法厂商为牟取暴利, 在高档食用油中掺入廉价食用油进行出售, 导致食用油掺伪事件时有发生, 已引起政府和民众的广泛关注。 为保障消费者的合法利益和维护正常的食用油市场秩序, 快速有效地检测食用油掺伪已刻不容缓。 近红外光谱技术以其简便、 快速、 无损、 无需样品预处理的特点, 被广泛应用于食用油掺伪分析。 概述了近红外光谱技术的基本原理, 综述了近十年来近红外光谱技术在橄榄油、 山茶油、 芝麻油、 核桃油等食用油的掺伪检测研究进展, 包括采用不同的试验装置与试验方法、 数据处理方法包括预处理、 特征波长选择及建模方法, 对二元、 三元及多元食用油掺伪进行检测研究, 从试验方法及数据处理等角度提高食用油掺伪检测的精度与适用范围, 以期建立较为有效的食用油掺伪定量检测与定性鉴别模型。 总结了食用油掺伪近红外光谱检测目前存在的问题, 包括食用油掺伪检测机理不明晰, 制备的掺伪食用油样本难以满足实际的复杂掺伪形式, 采用取样方式的掺伪检测仅能实现现场部分抽检, 及未建立食用油掺伪检测的统一标准规范。 展望了今后的发展趋势, 指出近红外光谱技术与其他快速检测技术融合获取更精准、 可靠的检测模型, 与物联网和大数据相结合构建食用油近红外光谱数据库, 实现光谱数据的共享、 掺伪检测模型的在线升级与远程更新, 将是未来的发展方向。
近红外光谱 食用油 掺伪检测 化学计量学 Near-infrared spectroscopy Edible oil Adulteration detection Chemometrics 
光谱学与光谱分析
2023, 43(3): 685
作者单位
摘要
1 北京理工大学光电学院, 北京 100081
2 中国人民解放军军事科学院军事医学研究院, 北京 100071
麦卢卡蜂蜜产自新西兰, 具有很强的抗菌及抗氧化作用, 其售价较高, 近年来掺假事件时有发生, 利用激光诱导荧光技术对掺杂糖浆的麦卢卡蜂蜜进行分类识别研究。 选用266, 355, 405和450 nm四种常用激光作为激发源, 选择三种品牌的新西兰进口麦卢卡蜂蜜(编号A, B, C)中掺杂烘焙糖浆作为实验样品, 掺杂比例为0%~90%, 间隔10%; 每个激发波长下每种样本溶液重复测试60次, 共7 200组数据。 光谱数据首先进行荧光波段截取、 平滑及归一化等预处理; 然后随机选取80%的数据做训练集, 20%的数据做测试集; 对训练集数据使用主成分分析(PCA)结合线性判别分析(LDA)做数据降维; 最后对降维后的数据分别建立K最近邻(KNN)和支持向量机(SVM)分类模型, 对测试集数据进行分类识别, 重复进行50次随机分组及分类识别后对得到的分类识别率求平均值及标准差。 实验分析结果表明, 激发光波长对最终识别结果影响较大, 266 nm激发的荧光光谱分类识别正确率最高, 三种麦卢卡蜂蜜掺杂溶液的分类识别率均能达到98.5%以上, 最高能达100%; 355和405 nm激发的分类识别效果次之, 所有样品的分类识别率均大于92%; 而450 nm激发的荧光光谱分类识别率最低, 不同样品的分类识别率均低于66%。 因此, 后续分类算法的比较仅使用266, 355和405 nm激发的荧光光谱数据, 分析结果表明, KNN算法的分类效果要优于SVM算法, 不同激发波长下三种蜂蜜掺杂溶液的分类识别率均是KNN算法更高, 且对266 nm激发的三种蜂蜜掺杂样品, KNN算法的分类识别率比SVM算法要高1%以上。 实验结果表明, 使用激光诱导荧光技术对掺假麦卢卡蜂蜜进行分类识别是可行的, 对于掺杂糖浆的麦卢卡蜂蜜, 在使用的所有组合中, 266 nm激发结合PCA-LDA降维和KNN分类算法的分类识别率最高, 分类效果最好, 可用于掺假麦卢卡蜂蜜的快速准确鉴别。
激光诱导荧光 多波长 麦卢卡蜂蜜 掺假检测 分类识别 Laser-induced fluorescence Multi-wavelength Manuka honey Adulteration detection Classification and identification 
光谱学与光谱分析
2022, 42(9): 2807
Author Affiliations
Abstract
1 College of Engineering, China Agricultural University, Beijing 100083, P. R. China
2 Institute of Food Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P. R. China
In this paper, a methodology based on characteristic spectral bands of near infrared spectroscopy (1000–2500 nm) and multivariate analysis was proposed to identify camellia oil adulteration with vegetable oils. Sunflower, peanut and corn oils were selected to conduct the test. Pure camellia oil and that adulterated with varying concentrations (1–10% with the gradient of 1%, 10–40% with the gradient of 5%, 40–100% with the gradient of 10%) of each type of the three vegetable oils were prepared, respectively. For each type of adulterated oil, full-spectrum partial least squares partial least squares (PLS) models and synergy interval partial least squares (SI-PLS) models were developed. Parameters of these models were optimized simultaneously by cross-validation. The SI-PLS models were proved to be better than the full-spectrum PLS models. In SI-PLS models, the correlation coe±cients of predition set (Rp) were 0.9992, 0.9998 and 0.9999 for adulteration with sunflower oil, peanut oil and corn oil seperately; the corresponding root mean square errors of prediction set (RMSEP) were 1.23, 0.66 and 0.37. Furthermore, a new generic PLS model was built based on the characteristic spectral regions selected from the intervals of the three SI-PLS models to identify the oil adulterants, regardless of the adultrated oil types. The model achieved with Rp 0.9988 and RMSEP=1.52. These results indicated that the characteristic near infrared spectral regions could determine the level of adulteration in the camellia oil.
Camellia oil adulteration detection characteristic near infrared spectral regions partial least squares synergy interval partial least squares 
Journal of Innovative Optical Health Sciences
2018, 11(2): 1850006
作者单位
摘要
1 江西农业大学生物光电技术及应用重点实验室, 江西 南昌 330045
2 浙江省检验检疫科学技术研究院, 浙江 杭州 311215
采用可见/近红外光谱技术结合化学计量学方法对油茶籽油三元体系掺假进行定量检测研究。 将菜籽油和花生油按不同比例掺入纯油茶籽油中, 获得掺假样本。 采集纯油茶籽油及掺假样本在350~1 800 nm范围内的可见/近红外光谱数据, 随机分为校正集和预测集, 并从不同建模波段、 预处理方法及建模方法角度对掺假预测模型进行优化。 研究结果表明, 菜籽油、 花生油和总掺伪量的最优建模波段及预处理方法分别为750~1 770, 900~1 770 , 870~1 770 nm和多元散射校正(MSC)、 标准归一化处理(SNV)和二阶微分, 而最优的建模方法均为最小二乘支持向量机(LSSVM)。 对于最优掺假模型, 菜籽油、 花生油和总掺伪量的预测集相关系数(Rp)和预测均方根误差(RMSEP)分别为0.963, 0.982, 0.993和2.1%, 1.5%, 1.8%。 由此可见, 可见/近红外光谱技术结合化学计量学方法可以用于油茶籽油的三元体系掺假定量检测。
可见/近红外光谱 掺假检测 油茶籽油 三元体系 模型优化 Visible/near infrared spectroscopy Adulteration detection Camellia oil Ternary system Model optimization 
光谱学与光谱分析
2016, 36(12): 3881
作者单位
摘要
江西农业大学生物光电技术及应用重点实验室, 江西 南昌 330045
利用近红外光谱在不同光程下对山茶油中掺杂大豆油的掺伪量进行定量检测研究,着重分析光程对掺伪量检测精度的影响.将大豆油按一定质量分数掺入山茶油获取实验样本,掺伪质量分数范围为1%~50%.利用QualitySpec型光谱仪采集样本在不同光程(1,2,4,10 mm)下的透射光谱,通过对比不同建模方法、预处理方法及建模波段范围所建立的掺伪量定量预测模型,分析光程对掺伪量检测精度的影响.研究结果表明,光程由1 mm增加到4 mm时,掺伪量定量预测模型性能随着光程的增加而逐渐变好,检测精度逐步提高;光程由 4 mm增加到10 mm时,掺伪量定量预测模型性能变差,检测精度下降,4 mm为较优的光程.在1,2,4和10 mm下所建立的较优掺伪量定量预测模型的预测集决定系数(R2P)和预测均方根误差(RMSEP)分别为0.923,0.977,0.989,0.962和4.58%,2.54%,1.72%,3.20%。
近红外光谱学 掺假检测 光程 检测精度 山茶油 Near infrared spectroscopy Adulteration detection Optical length Detection accuracy Camellia oil 
光谱学与光谱分析
2015, 35(7): 1894
作者单位
摘要
江西农业大学生物光电技术及应用重点实验室, 江西 南昌 330045
为打击山茶油掺假,保障消费者的合法利益,利用近红外光谱和子窗口重排分析(SPA)对山茶油的复杂掺假(掺入大豆油、菜籽油、花生油及混合油)进行检测。采集85 个纯山茶油和315 个掺假山茶油样本的近红外光谱,利用SPA 变量选择方法对样本光谱的波长变量进行筛选,再由偏最小二乘-线性判别分析(PLS-LDA)建立山茶油掺假检测模型,并与竞争性自适应重加权算法(CARS)和无信息变量消除(UVE)变量选择方法的结果进行比较。研究结果表明,近红外光谱联合SPA 方法可以用于山茶油的复杂掺假检测,预测集样本的分类错误率、灵敏度及特异性分别为0、1和1。SPA 方法优于UVE 方法,与CARS方法相当,是一种有效的变量选择方法,能简化模型并提高模型的预测精度和稳定性。
光谱学 掺假检测 近红外 子窗口重排分析 山茶油 
光学学报
2015, 35(6): 0630005

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!