作者单位
摘要
中国电子科技集团公司 第五十二研究所, 杭州 311100
针对现有光纤传感器测量温度、磁场强度时灵敏度较低的问题, 提出了一种基于光信号的光纤温度磁场传感器。传感器以长周期光纤光栅(LPFG)级联光纤布喇格光栅(FBG)作为传感结构, 以磁流体作为磁性敏感材料, 采用HF溶液腐蚀光纤包层来提高灵敏度。首先介绍了传感器实现温度和磁场强度的双参量测量原理, 然后利用Optigrating仿真软件对LPFG-FBG传感单元进行模拟仿真, 最后根据仿真结果制作传感器并搭建实验环境进行温度和磁场强度的测量实验。实验结果表明: 当温度为35~85 ℃时, 传感器的温度灵敏度为85.7 pm/℃; 当磁场强度为4~20 mT时, 磁场强度灵敏度为65 pm/mT, 且稳定性良好。
长周期光纤光栅 光纤布喇格光栅 磁流体 温度 磁场强度 long period fiber grating fiber Bragg grating magnetic fluid temperature magnetic field intensity 
光通信技术
2023, 47(2): 28
Author Affiliations
Abstract
1 State Key Laboratory of The Gas Disaster Detecting, Preventing and Emergency Controlling, Chongqing 400037, China
2 China Coal Technology and Engineering Group Chongqing Research Institute, Chongqing 400039, China
3 Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), Chongqing University, Chongqing 400044, China
A novel fiber-optic magnetic field sensor with high interrogation speed and resolution by using an etched fiber Bragg grating (FBG) in conjunction with a dual-loop optoelectronic oscillator (OEO) is proposed and experimentally demonstrated. A commercial FBG is firstly dipped into mixed hydrofluoric acid solution to remove the cladding layer and then is embedded with the magnetic fluid (MF) as a sensing element. The central wavelength reflected from the FBG is related to the overall time delay of the dual-loop OEO, which determines the oscillating frequency of the OEO. Therefore, the magnetic field can be estimated by measuring the oscillating frequency shift of OEO. The experimental results show that the oscillating frequency linearly increases with the increment of the magnetic field, achieving the sensitivity of 16.3 Hz/Oe with an R-square of 0.991 in the range of 5 mT-10 mT. In addition, the maximum error is within ±0.05 mT in the range of 7 mT-8 mT, which offers potentials in many fields where the high-precision magnetic field measurement is required.
Etched fiber Bragg grating optoelectronic oscillator magnetic fluid magnetic field measurement 
Photonic Sensors
2022, 12(4): 220419
作者单位
摘要
首都师范大学物理系, 太赫兹光电子学教育部重点实验室, 太赫兹波谱与成像北京市重点实验室, 北京成像理论与技术高精尖创新中心, 北京 100048
太赫兹(THz)是指频率在0.1~10 THz的电磁波, 其波长在30~3 000 μm范围内。 由于自然界许多小分子的振动、 转动等的频率均在太赫兹波段, 并且太赫兹的低电子能特性使其在实验过程中不会对待测样品造成破坏, 所以太赫兹技术被广泛地应用于无损检测、 生物医学等领域。 但是太赫兹在铁磁领域的相关报道还是较少的, 因此本研究利用太赫兹时域光谱系统研究了一种新型磁性材料: 磁流体的组成部分-载基液的太赫兹透射特性。 磁流体是一种兼具液体流动性和固体磁性的新型功能材料, 其打破了传统磁性材料的固体形态。 磁流体由Fe3O4纳米级颗粒以及载基液构成。 在前人的研究成果中发现磁性液体不仅具有良好的磁光效应, 而且对于一定频率的太赫兹波具有高透射率; 另外, 在极低频电磁场作用下其可用于医学上的肿瘤治疗, 可作为靶向治疗的载药系统。 由于磁流体的组成部分-载基液成本较高, 因此在实验中运用了微流控技术。 微流控技术对检测样品的消耗少、 检测速度快, 并且可以根据实验需求自行设计沟道, 因此是一种便捷的、 灵活性好的检测方式。 采用对太赫兹波具有高透过率的石英材料制成了夹心式的太赫兹微流控芯片。 首先将两块3 cm×3 cm×2 mm的石英玻璃作为基片和盖片, 再把强粘黏性双面胶剪刻成镂空样式, 形成2 cm×2 cm的方形区域, 然后把盖片和基片通过雕刻好的强粘黏性双面胶键合, 其沟道厚度为50 μm, 可以用于对少量液体的探测, 并且可以使载基液呈薄膜状。 之后将太赫兹技术和微流控技术相结合, 利用太赫兹时域光谱(THz-TDS)系统研究了载基液的太赫兹透射特性, 通过对太赫兹时域光谱以及频域光谱的研究发现, 装有载基液的微流控芯片的信号强度高于空的微流控芯片, 这一发现为载基液的应用和深入研究提供了技术支持。
太赫兹 磁流体 微流控芯片 载基液 Terahertz Magnetic fluid Microfluidic chip Carrier liquid 
光谱学与光谱分析
2022, 42(10): 3012
吕康康 1刘兴 2姜晨 1王华 2[ ... ]刘云启 1,*
作者单位
摘要
1 上海大学通信与信息工程学院特种光纤与光接入网重点实验室,上海 200444
2 国网江西省电力有限公司信息通信分公司,江西 南昌 330096
光纤磁场传感器具有灵敏度高、体积小、耐腐蚀以及抗电磁干扰等优点,弥补了传统磁场传感器的不足,在**、工业、电网等多个领域发挥着重要作用。使用二氧化碳激光器分别在标准通信单模光纤和光敏光纤上制备了两种类型的长周期光纤光栅(LPFG),将LPFG浸入磁流体中制备磁场传感器。当施加外部磁场时,LPFG的谐振波长会发生偏移。当磁场强度在1.6~25.5 mT范围内变化时,可达到的最大磁场灵敏度为126.5 pm/mT。该传感器在磁场或电场系统中具有潜在的应用。
光栅 长周期光纤光栅 光纤传感 磁流体 磁场传感器 
激光与光电子学进展
2022, 59(23): 2305001
李永倩 1,2,3温芳芳 1,2,3,*王劭龙 1
作者单位
摘要
1 华北电力大学电子与通信工程系,河北 保定 071003
2 华北电力大学河北省电力物联网技术重点实验室,河北 保定 071003
3 华北电力大学保定市光纤传感与光通信技术重点实验室,河北 保定 071003
磁流体的固体磁性和液体流动性在温度与磁场传感领域有很大的应用潜力。将磁流体和光纤传感结构结合,将外界温度与磁场的信息调制于传输光波上,通过解调特征光谱的参量,实现温度与磁场的传感。综述了基于磁流体的温度与磁场传感器的研究进展,从磁流体与传感结构不同结合方式的角度,介绍了基于模式干涉、倏逝波、光纤光栅、光纤环镜、光子晶体光纤、表面等离子体、法布里-珀罗(FP)干涉的温度与磁场传感器。分析比较各传感结构的传感原理、灵敏度,展望未来的发展趋势。其中,磁流体填充特种光纤的温度与磁场传感器具有较高的灵敏度,结构稳固,抗干扰性强。
光纤光学 光纤传感 磁流体 双参量测量 
激光与光电子学进展
2022, 59(5): 0500003
作者单位
摘要
天津理工大学天津市薄膜电子与通信器件重点实验室, 电气电子工程学院, 天津 300384
利用熔接机电弧放电和氢气火焰加热相结合的方法,在光纤直径骤减的锥区中心位置制得非绝热型微光纤。该光纤结构具有较强的倏逝场,可以大幅增强光与物质的相互作用。将其与磁流体进行集成,基于磁流体的磁场可调谐折射率变化特性,能够实现对外界弱磁场的快速测量。研究结果表明,在0~150 Oe的磁场强度范围内,灵敏度可达193.28 pm/Oe,探测极限约为0.187 Oe,并且其灵敏度随着干涉峰波长的增大而增大。该传感器具有体积小、成本低、制作方法简单等优点,在电磁场检测领域具有良好的应用前景。
光纤传感器 磁场检测 磁流体 非绝热型 微光纤 
中国激光
2021, 48(24): 2406003
作者单位
摘要
山东理工大学 物理与光电工程学院, 山东 淄博 255000
磁场的传感测量在相关领域具有重要应用。利用磁流体的磁光效应, 提出了一种基于光学Tamm态的磁场传感结构。该结构由加载了金属层和电介质层的一维磁流体光子晶体构成。数值研究了该结构的结构参数对传感性能的影响。结果表明, 磁流体层越厚, 探测灵敏度就越高。金属层和电介质层的厚度均存在一个最佳值, 使得传感器具有较高的探测精度。结果还表明, 该传感结构的探测灵敏度优于已报道的采用光子晶体缺陷结构实现的磁场传感器。研究结果为基于光学Tamm态的磁流体磁场传感器的设计制备提供了参考。
光学塔姆态 磁流体 磁场传感 传输矩阵法 optical Tamm state magnetic fluid magnetic field sensors transfer matrix method 
光电技术应用
2021, 36(1): 43
作者单位
摘要
中国计量大学 光学与电子科技学院, 杭州 310018
针对磁流体的光学磁光特性, 着重介绍了常见的5种类型的光纤磁场传感器, 包括基于干涉机理的光纤磁场传感器、基于光纤光栅结构的光纤磁场传感器、基于倏逝波机理的光纤磁场传感器、基于表面等离子体共振机理的光纤磁场传感器和基于光子带隙效应机理的光纤磁场传感器,分别分析了各种磁流体光纤磁场传感器的技术性能, 并指出其技术难点, 最后展望了磁流体光纤磁场传感器的研究方向。
磁流体 光纤传感器 传感机理 磁场测量 magnetic fluid optical fiber sensor sensing mechanism magnetic field measurement 
光通信技术
2020, 44(11): 1
作者单位
摘要
1 重庆理工大学 理学院, 重庆 400054
2 绿色能源材料技术与系统重庆市重点实验室, 重庆 400054
本文提出了一种磁流体包覆的无芯-三芯-无芯光纤结构的磁场传感器。将两段2 mm的无芯光纤熔接在50 mm的三芯光纤两端, 并将此结构插入70 mm长的毛细管中, 通过向毛细管里注射磁流体, 使无芯-三芯-无芯这一结构浸没在磁流体里。无芯光纤用来激发三芯光纤的包层模, 并实现模间干涉。通过测量透射谱波谷波长的漂移或探测透射谱波谷的强度损耗可以实现对磁场强度的检测。实验结果表明: 该传感器在磁场强度为8~16 mT内, 透射谱的特征波长漂移随之线性变化, 在1 606 nm附近的波长漂移灵敏度为68.57 pm/mT; 该波长附近的透射谱强度损耗变化在相同的磁场强度范围内呈现良好的线性度, 对应的强度灵敏度为0.828 7 dB/mT。该传感结构制作简易, 灵敏度高, 成本低廉, 在磁场传感领域中有一定应用价值。
光纤传感 磁流体 模间干涉 无芯光纤 三芯光纤 optic fiber sensor magnetic fluid inter-mode interference no-core fiber three-core fiber 
光学 精密工程
2020, 28(8): 1700
作者单位
摘要
西安邮电大学 电子工程学院, 西安 710061
为降低温度对基于磁流体(MF)和长周期光纤光栅(LPFG)磁场测量系统中测量结果造成的误差, 提出一种基于MF和带状双芯光纤的磁场测量校正方案。在带状双芯光纤内集成包层热光系数不同的LPFG, 利用其温度灵敏度之间的差异实现对磁场测量结果的校正。通过理论分析与系统仿真, 论证了MF与LPFG的温度特性, 揭示了一定温度变化范围内MF折射率与LPFG谐振波长之间的关系, 与未进行温度补偿的系统相比, 所提传感方案的磁场强度精度至少提高79.1%。
长周期光纤光栅 磁流体 有效热光系数 温度补偿 long period fiber grating magnetic fluid effective thermo-optic coefficient temperature compensation 
光通信技术
2020, 44(3): 27

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!