李昕 1,2,3,*徐正琨 1杨静育 1王涌天 1,**黄玲玲 1,***
作者单位
摘要
1 北京理工大学光电学院北京市混合现实与新型显示工程技术研究中心,北京 100081
2 北京理工大学光电学院光电成像技术与系统教育部重点实验室,北京 100081
3 北京理工大学光电学院信息光子技术工信部重点实验室,北京 100081
相位是光场信息的重要组成部分。在光学显微成像领域,大部分生物细胞对光的吸收较弱,传统的亮场显微无法准确地表征细胞的结构特征,因此相位成像成为非标记细胞观测的重要方法。经典的相衬显微镜基于干涉成像原理,通常需要大块的折射棱镜或者复杂的成像系统,因而系统臃肿,易受环境扰动。超表面是一种特征尺寸在纳米或微米量级的光学元件,具有强大的光场调控能力,超表面集成在显微系统中可以实现方向无关、单摄式的定量相位成像,具有小型、轻便、易集成等优点。本综述回顾经典的相位成像技术原理,详细介绍基于剪切干涉、相位衬比和强度传输方程等3类超表面的相位成像技术原理,比较不同技术的优缺点和适用场景,指出超表面在相位成像领域面临的挑战,并对未来发展趋势进行展望。
相位成像 超表面 剪切干涉 涡旋相衬 
激光与光电子学进展
2024, 61(2): 0211019
Author Affiliations
Abstract
1 Departamento de Física Teórica Atómica y Óptica, Universidad de Valladolid, Valladolid, Spain
2 Université de Bordeaux-CNRS-CEA, Centre Lasers Intenses et Applications (CELIA), UMR 5107, Talence, France
3 European XFEL GmbH, Schenefeld, Germany
4 Laboratory for Laser Energetics, Rochester, New York, USA
5 CEA-DAM, DIF, Arpajon, France
6 University of Michigan, Ann Arbor, Michigan, USA
7 Los Alamos National Laboratory, Los Alamos, New Mexico, USA
8 Lawrence Livermore National Laboratory, Livermore, California, USA
9 Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
10 Technische Universität Dresden, Dresden, Germany
11 Institute of Physics of the ASCR, Prague, Czech Republic
12 CEA-CESTA, CS 60001, Le Barp Cedex, France
13 Blackett Laboratory, Imperial College London, London, UK
14 Department of Astrophysics and Astronomy, The Johns Hopkins University, Baltimore, Maryland, USA
15 Center for Energy Research, University of California San Diego, San Diego, California, USA
Diagnosing the evolution of laser-generated high energy density (HED) systems is fundamental to develop a correct understanding of the behavior of matter under extreme conditions. Talbot–Lau interferometry constitutes a promising tool, since it permits simultaneous single-shot X-ray radiography and phase-contrast imaging of dense plasmas. We present the results of an experiment at OMEGA EP that aims to probe the ablation front of a laser-irradiated foil using a Talbot–Lau X-ray interferometer. A polystyrene (CH) foil was irradiated by a laser of 133 J, 1 ns and probed with 8 keV laser-produced backlighter radiation from Cu foils driven by a short-pulse laser (153 J, 11 ps). The ablation front interferograms were processed in combination with a set of reference images obtained ex situ using phase-stepping. We managed to obtain attenuation and phase-shift images of a laser-irradiated foil for electron densities above ${10}^{22}\;{\mathrm{cm}}^{-3}$ . These results showcase the capabilities of Talbot–Lau X-ray diagnostic methods to diagnose HED laser-generated plasmas through high-resolution imaging.
deflectometry OMEGA EP phase-contrast imaging Talbot–Lau X-ray interferometry 
High Power Laser Science and Engineering
2023, 11(4): 04000e49
作者单位
摘要
1 中国科学院 长春光学精密机械与物理研究所,吉林 长春 130033
2 中国科学院大学,北京 100049
3 中科聚研(吉林)干细胞科技有限公司,吉林 吉林 132000
在显微成像领域中,高成像质量图像的获取与良好的照明方式息息相关。传统显微镜使用聚光透镜来提供均匀强度的照明,调节聚光透镜的光阑匹配不同放大倍率的物镜。然而无色生物细胞的光学吸收系数低,在传统显微镜下难以观测到其细节信息。为了突破传统显微镜的成像功能,本文设计了一种可调控的显微镜聚光镜模块,通过将小型扭曲液晶器件嵌入聚光透镜的后焦面处,调控液晶器件的对光的透过效果可以实现明场成像以及差分相衬成像。系统由一款商用显微镜改装而成,液晶器件尺寸为22 mm×18 mm,实现了系统的高度集成化。通过实验验证了系统的成像性能,实现了对微凸透镜样品的定量相位重建,实验与理论曲线的互相关系数达到0.994 9,并且通过胚胎干细胞的重建展示了系统在实际应用中的效果。
显微镜 计算成像 差分相衬成像 microscopy computational imaging differential phase contrast imaging 
液晶与显示
2023, 38(4): 456
Author Affiliations
Abstract
The most recent discoveries in the biochemical field are highlighting the increasingly important role of lipid droplets (LDs) in several regulatory mechanisms in living cells. LDs are dynamic organelles and therefore their complete characterization in terms of number, size, spatial positioning and relative distribution in the cell volume can shed light on the roles played by LDs. Until now, fluorescence microscopy and transmission electron microscopy are assessed as the gold standard methods for identifying LDs due to their high sensitivity and specificity. However, such methods generally only provide 2D assays and partial measurements. Furthermore, both can be destructive and with low productivity, thus limiting analysis of large cell numbers in a sample. Here we demonstrate for the first time the capability of 3D visualization and the full LD characterization in high-throughput with a tomographic phase-contrast flow-cytometer, by using ovarian cancer cells and monocyte cell lines as models. A strategy for retrieving significant parameters on spatial correlations and LD 3D positioning inside each cell volume is reported. The information gathered by this new method could allow more in depth understanding and lead to new discoveries on how LDs are correlated to cellular functions.The most recent discoveries in the biochemical field are highlighting the increasingly important role of lipid droplets (LDs) in several regulatory mechanisms in living cells. LDs are dynamic organelles and therefore their complete characterization in terms of number, size, spatial positioning and relative distribution in the cell volume can shed light on the roles played by LDs. Until now, fluorescence microscopy and transmission electron microscopy are assessed as the gold standard methods for identifying LDs due to their high sensitivity and specificity. However, such methods generally only provide 2D assays and partial measurements. Furthermore, both can be destructive and with low productivity, thus limiting analysis of large cell numbers in a sample. Here we demonstrate for the first time the capability of 3D visualization and the full LD characterization in high-throughput with a tomographic phase-contrast flow-cytometer, by using ovarian cancer cells and monocyte cell lines as models. A strategy for retrieving significant parameters on spatial correlations and LD 3D positioning inside each cell volume is reported. The information gathered by this new method could allow more in depth understanding and lead to new discoveries on how LDs are correlated to cellular functions.
lipid droplets label-free phase-contrast imaging in-flow tomography 3D imaging 
Opto-Electronic Advances
2023, 6(1): 220048
作者单位
摘要
中国科学技术大学国家同步辐射实验室, 安徽 合肥 230029
提出一种光栅 X 射线相衬断层扫描中吸收信号环形伪影的去除方法。该方法采用正弦图域和重建图域结合的处理算法。对于弱伪影, 通过正弦图域的排序和滤波去除。而对于强伪影, 首先根据环形伪影在极坐标系的表现, 计算残差图像, 转换到笛卡尔坐标系得到伪影像素和样品的边界; 进而使用基于机器学习的图像分割方法获取每一类样品的分布, 同时为了保护边界信息, 通过形态学操作获得样本的内部区域; 最后再利用残差图像的分布特征定位伪影像素, 并使用临近非伪影像素均值替代。实验结果表明该方法可以在不破坏样品边界的前提下有效地去除图像中的环形伪影。
层析图像处理 光栅 X 射线成像 相位衬度断层扫描 环形伪影 tomographic image processing grating-based X-ray imaging phase contrast tomography ring artifacts 
量子电子学报
2023, 40(1): 40
作者单位
摘要
深圳大学 物理与光电工程学院 光电子器件与系统教育部/广东省重点实验室,深圳 518060
目前针对双相位光栅干涉仪灵敏度的分析存在着灵敏度模型不合理、理论结果不完整等问题,制约着系统灵敏度的提高。对此,提出了新的灵敏度模型,即物体所产生的条纹移动与光源位置变化产生的条纹移动是等效的。该灵敏度模型将物体对X射线的折射作用转化成了光源的移动,同时巧妙地利用了系统的劳条件将光源移动与成像条纹移动联系起来。利用新的灵敏度模型,成功获取了双相位光栅干涉仪和Talbot-Lau干涉仪的灵敏度,为优化系统灵敏度提供了理论指导。
X射线相衬成像 Talbot-Lau干涉仪 双相位光栅干涉仪 灵敏度 劳条件 X-ray phase-contrast imaging Talbot-Lau interferometer Dual phase grating interferometer Sensitivity Lau condition 
光子学报
2023, 52(1): 0105001
Author Affiliations
Abstract
1 Photonics Laboratory, Department of Physics, Dankook University, Cheonan 31116, Republic of Korea
2 Center for Basic Science Research at DKU, Dankook University, Cheonan 31116, Republic of Korea
Non-interferometric X-ray quantitative phase imaging (XQPI), much simpler than the interferometric scheme, has provided high-resolution and reliable phase-contrast images. We report on implementing the volumetric XQPI images using concurrent-bidirectional scanning of the orthogonal plane on the optical axis of the Foucault differential filter; we then extracted data in conjunction with the transport-intensity equation. The volumetric image of the laminate microstructure of the gills of a fish was successfully reconstructed to demonstrate our XQPI method. The method can perform 3D rendering without any rotational motion for laterally extended objects by manipulating incoherent X-rays using the pinhole array.
X-ray imaging phase contrast imaging Foucault differential filter transport-intensity equation 
Chinese Optics Letters
2023, 21(1): 013401
作者单位
摘要
江南大学 理学院, 江苏 无锡 214122
活细胞观测可以获得细胞的生命状态, 是生物医学中众多研究的基础。然而多数活细胞因整体透明难以观测, 通常使用泽尼克相衬及微分干涉相衬等相位成像技术来增强图像衬度。但通用的泽尼克相衬显微镜和微分干涉相衬显微镜仪器复杂、成本高昂, 且依赖于沃拉斯顿棱镜和相衬环等特定光学元器件。提出了一种基于双目视强度传输方程的多模式相位成像方法, 利用显微镜双目视筒上两个相机同步拍摄的物体欠焦及过焦图像, 可求解强度传输方程得到物体的定量相位, 并进一步计算物体的泽尼克相衬图像及微分干涉相衬图像。数值模拟和成像实验结果显示双目视多模式相位成像能够提供高质量的泽尼克相衬及微分干涉相衬图像。方法不需要借助特殊光学器件或者复杂光路, 成本低且易于实现, 有能力替代昂贵的相衬显微镜及微分干涉相衬显微镜, 在非标记生物成像中获得更广泛的运用。
生物光学 相位成像 强度传输方程 泽尼克相衬 微分干涉相衬 多模式 非标记生物成像 biological optics phase imaging transfer of intensity equation zernike phase contrast differential interference contrast multimodal unlabeled biological imaging 
光学技术
2022, 48(3): 277
Author Affiliations
Abstract
1 Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, College of Physics and Optoelectronic Engineering, , Shenzhen 518060, China
2 College of Electronics and Information Engineering, , Shenzhen 518060, China
Applying an ultrafast vortex laser as the pump, optical parametric amplification can be used for spiral phase-contrast imaging with high gain, wide spatial bandwidth, and high imaging contrast. Our experiments show that this design has realized the 1064 nm spiral phase-contrast idler imaging of biological tissues (frog egg cells and onion epidermis) with a spatial resolution at several microns level and a superior imaging contrast to both the traditional bright- or dark-field imaging under a weak illumination of 7 nW/cm2. This work provides a powerful way for biological tissue imaging in the second near-infrared region.
optical parametric amplification ultrafast vortex laser pulse spatial resolution phase-contrast imaging 
Chinese Optics Letters
2022, 20(10): 100003
作者单位
摘要
河北工程大学数理科学与工程学院,河北 邯郸 056038
本文针对普通显微镜相衬成像需要手动聚焦、切换相位板等问题,提出了一种基于深度学习的自动聚焦相衬显微方法,并且基于该方法设计了一种基于U-Net的网络框架。在该网络框架中引入残差模块和空间注意力机制,目的是使网络更好地利用特征图之间的关系,同时使用密集模块加强特征信息复用,以提高网络的性能。采用三种不同类型的样本在不同的焦距下进行训练网络,数值计算和实验结果表明,所提方法可以快速、精准地实现自动聚焦相衬成像,并达到去噪的效果。此外,将本文所提网络框架与U-Net、生成对抗网络进行了比较,较高的SSIM值显示了所提网络框架的优势。最后,使用基于少量数据集即可完成训练的生成对抗网络对自动聚焦相衬成像进行验证,证明了该方法的可行性。本文所提出的基于改进U-Net的自动聚焦相衬成像方法有助于细胞生物学研究。
医用光学 深度学习 相衬显微 自动聚焦 U-Net 
中国激光
2022, 49(15): 1507302

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!