钟航 1陈钧 1,*陈骏 1廖俊生 2,**
作者单位
摘要
1 表面物理与化学重点实验室,四川 绵阳 621908
2 中国工程物理研究院材料研究所,四川 绵阳 621907
光学捕获经过近几十年的发展,从光学悬浮到紧密聚焦的单光束光镊再到最近发展的多种类型的光学阱,已经可以捕获包括碳、金属氧化物、花粉、孢子、无机/有机液滴等多种不同类型的粒子,结合拉曼光谱、腔衰荡光谱或激光诱导击穿光谱可以获取悬浮微粒在原生状态下的物理和化学信息,并可以实现受控气氛环境下单粒子的化学反应研究。首先,本文根据微粒的吸光性对空气中微粒的光学捕获力的来源进行了介绍,透明微粒主要受辐射压力的作用,吸光微粒主要受光泳力的作用;然后,根据光学捕获力的不同对单光束、双光束、高斯光束和空心光束等光学捕获设计进行分类介绍;最后,综述了光学捕获与光谱技术结合起来用于单粒子研究的最新进展,并讨论了光学捕获拉曼光谱面临的挑战。
光谱学 光镊 光学捕获 单颗粒 气溶胶 
中国激光
2024, 51(3): 0307303
作者单位
摘要
厦门大学公共卫生学院分子影像暨转化医学研究中心,福建 厦门 361104
荧光碳量子点作为一种特殊的量子点,具有卓越的荧光性能以及可调控的表面化学性质,在生物成像、疾病诊断和治疗等生物医药领域中备受瞩目。基于近期的文献报道,详细介绍和总结了碳点在医药领域中的应用及其相关机制和特性。概述了碳点在生物医药应用中所面临的挑战,并提出了潜在的解决方案。最后,对未来的研究方向提出了建议,以期进一步拓展碳点在生物医药领域中的应用范围,为医学领域的创新和发展提供理论依据。
生物光学 碳量子点 生物成像 疾病诊断 疾病治疗 
中国激光
2024, 51(3): 0307301
顾有林 1,2,3,*张熙 1,3胡以华 1,2,3孟凡昊 1,3[ ... ]王思雨 1,3
作者单位
摘要
1 国防科技大学脉冲功率激光技术国家重点实验室,安徽 合肥 230037
2 先进激光技术安徽省实验室,安徽 合肥 230037
3 国防科技大学,安徽 合肥 230037
生物材料作为一种有别于传统无机消光材料的新型烟幕介质,悬浮于空气中,以烟幕的形式存在,通过对光的吸收和散射作用改变光波的传输特性。本文根据生物材料的复折射率特点,介绍了生物材料的吸收和散射特性,概括了生物材料单粒子、单分散凝聚粒子和多分散凝聚粒子的消光特性的表征方式,分析了影响生物材料消光特性的因素,总结了生物材料消光性能的测试方法。最后,本文提出了生物材料在复杂空间结构模拟精确化、消光特性影响因素分析多元性、消光特性测试标准化方面的发展趋势,以期为新型消光材料的制备和改进等提供有益参考。
材料 烟幕 消光特性 凝聚粒子 复折射率 
中国激光
2024, 51(3): 0307302
作者单位
摘要
1 暨南大学纳米光子学研究院,广东省纳米光学操控重点实验室,广东 广州 511443
2 仲恺农业工程学院自动化学院,广东 广州 510225
光学操控已被广泛应用于生物医学、物理和材料科学等领域。近年来,锥形光纤光镊由于具有操作灵活、结构紧凑、易于制造等特点,在光学操控领域引起了极大关注。作为一种非侵入式光操控工具,锥形光纤光镊不会对生物组织和活体细胞产生接触式物理损伤,因而可以直接应用于细胞的多维度操控。此外,红外光波对生物组织具有良好的穿透性,这使得锥形光纤光镊在生物及医学领域有着不俗的表现。在这篇综述,笔者总结了锥形光纤光镊在单细胞、多细胞、亚细胞等层面的研究现状,并介绍了其在神经细胞调控方面的最新进展。
生物光学 光纤光学 光纤光镊 光捕获 细胞操控 神经调控 
中国激光
2023, 50(15): 1507302
郭敏 1,2刘享洋 1,2董贤子 1刘洁 1[ ... ]郑美玲 1,*
作者单位
摘要
1 中国科学院理化技术研究所仿生材料与界面科学重点实验室,北京 100190
2 中国科学院大学未来技术学院,北京 101407
生物材料的表面拓扑结构能够显著影响细胞的黏附、增殖、迁移和分化等行为。为有效模拟体内细胞微环境,利用飞秒激光无掩模光学投影光刻技术制备了一系列曲线型拓扑结构。结果表明:细胞在沟槽、折线和三种不同曲率的波浪形拓扑结构上严格按照拓扑结构形貌进行生长、迁移。当波浪形结构曲率过大时,细胞改变原有的迁移方向,产生沿弯曲方向的迁移行为。共聚焦荧光显微图像显示:细胞在折线结构和波浪线结构的拐角区域发生骨架重排,相较于线区域细胞圆度增加。据此提出了细胞在曲线型拓扑结构上的迁移机制。该研究揭示了细胞对曲线型拓扑结构的响应机制,将为体外植入材料的设计提供科学依据。
医用光学 飞秒激光 无掩模光学投影光刻 曲线型拓扑结构 细胞迁移 细胞骨架 
中国激光
2023, 50(15): 1507303
徐明亮 1,2李芳媛 1,3刘岳圻 1,2张瑾慧 1,2[ ... ]何飞 1,4,*
作者单位
摘要
1 中国科学院上海光学精密机械研究所激光新体系融合创新中心,上海 201800
2 中国科学技术大学物理学院,安徽 合肥 230026
3 中国科学院大学,北京 100049
4 张江实验室,上海 201210
神经接口是神经系统与外界物理设备进行信息交互的关键器件,利用光、电、磁、声等多种模态信息的融合,以神经信息增强的形式,可对大脑网络进行高时空精度的神经动力学分析,植入式多模态神经接口在神经科学基础研究、神经疾病的生物光电子诊疗、脑机融合与交互等前沿领域中具有重要应用。首先介绍了最新基于光学方法和电生理技术的多模态神经记录和调控原理,接着回顾了光电神经探针研究进展,并归纳了光学成像和记录及电生理记录等多种模态神经数据分析处理的一般方法,最后对植入式多模态神经接口进行总结,展望了该领域当前面临的挑战和未来的发展趋势。
医用光学 生物医学成像 光电子学 光遗传学 脑血流动力学 神经接口 植入式器件 微纳加工 
中国激光
2023, 50(15): 1507301
作者单位
摘要
1 浙江大学光电科学与工程学院,浙江 杭州 310027
2 浙江大学脑科学与脑医学学院,浙江 杭州 310058
为了实现在活体小鼠脑中多部位的光纤记录和区域可选择的光刺激,开发了一套集成度高、参数可独立调控的多通道光遗传系统,以满足光遗传学领域中大规模神经动力学研究需求。在该系统中,设计了一款1转7扇出多模光纤束,将光纤束与扫描振镜相结合,并利用时分复用技术调制不同波长的光源,以实现高质量的多通道记录和通道可选择的光刺激。评估了多光纤通道的参数稳定性,在小鼠前额叶、杏仁核、腹侧被盖等脑区同步记录了4个通道的钙信号。通过振镜靶向特定的光纤通道,可对自由移动的小鼠进行光遗传干预。该系统可用于活体多脑区光遗传干预与记录,为神经环路研究和行为学实验提供了有力工具。
生物光学 光遗传学 光刺激 多通道 多模光纤 
中国激光
2023, 50(9): 0907302
作者单位
摘要
1 清华大学电子工程系,清华‑IDG/麦戈文脑科学研究院,北京 100084
2 北京理工大学光电学院,北京 100081
随着微电子学与光电子学进入“后摩尔时代”,高性能光电器件与生物系统的融合逐渐成为一个重要的发展方向。采用高性能半导体光电器件和系统解决神经科学领域面临的技术难题,尤其是借助光学、电学等手段对神经信号进行调控和传感,受到了越来越广泛的关注。本综述论文以电子工程领域的基本单元之一——二极管与神经科学领域的基本单元——神经元之间的相互作用为切入点,总结了本课题组近年来的代表性研究工作。通过对材料器件进行设计和加工,实现了生物相容的植入式光电器件。这些光电器件通过光电信号的转换与神经信号相互作用,可以实现对生物细胞、组织和活体系统的光遗传学调控、无线光电刺激、原位荧光检测和光电传感等功能。这些新型的光电器件技术对于基础神经科学研究和神经疾病诊疗都具有重要意义。
光学器件 光电二极管 微型LED 光遗传学 神经调控 荧光探测 
中国激光
2023, 50(9): 0907301
作者单位
摘要
上海交通大学生物医学工程学院,上海 200030
钙离子是细胞内重要的第二信使,调节基因转录、能量合成及细胞增殖和凋亡等功能。细胞膜与细胞器上钙相关蛋白协同作用,形成复杂而有序的钙信号网络。在亚细胞结构上特异性激活与抑制某个钙相关蛋白而不影响其他蛋白及其他细胞器能够极大促进亚细胞结构钙信号调节机制及相关功能研究。然而,由于药物在细胞内的自由扩散及蛋白在细胞内的广泛表达,药物的分子特异性及空间特异性有限,因此基于激光的钙信号调节方法得到发展。主要讨论了光解锁笼、光遗传以及全光调控三种基于激光的高空间分辨率的细胞内钙信号调控技术的优点及局限性。理论上,它们对细胞的刺激可以局限在亚微米区域。特别地,分析阐述了基于多光子激发的低功率近红外飞秒激光调控细胞内钙信号的新型技术与机制。
生物光学 多光子激发 光解锁笼 光遗传 全光调控 飞秒激光 
中国激光
2023, 50(3): 0307301
作者单位
摘要
上海交通大学生物医学工程学院,上海 200240

超分辨显微成像技术是生物医学领域的重要成像工具,它通过突破光学衍射的极限,以纳米级尺度解析大脑神经元的结构,其在活体大脑成像中的应用对于神经科学的发展具有重要影响。由于组织光散射、生物相容性、成像系统兼容性等因素,超分辨显微成像技术在活体大脑成像的深度、速度、时间等方面都受到限制。基于传统的双光子显微成像策略,本文介绍了目前应用于活体大脑成像的受激发射损耗显微成像和结构光照明显微成像的研究进展,分析了它们存在的困难和挑战,最后总结了应对挑战的思路并对未来的发展进行了展望。

医用光学 超分辨显微成像 活体成像 大脑成像 双光子显微成像 受激发射损耗显微成像 结构光照明显微成像 
中国激光
2022, 49(20): 2007301

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!