Author Affiliations
Abstract
1 Optical Communication Laboratory, Ocean College, Zhejiang University, Zhoushan 316021, China
2 Hainan Institute of Zhejiang University, Sanya 572000, China
3 Key Laboratory of Ocean Observation-Imaging Testbed of Zhejiang Province, Ocean College, Zhejiang University, Zhoushan 316021, China
This paper presents an improved method for imaging in turbid water by using the individual strengths of the quadrature lock-in discrimination (QLD) method and the retinex method. At first, the high-speed QLD is performed on images, aiming at capturing the ballistic photons. Then, we perform the retinex image enhancement on the QLD-processed images to enhance the contrast of the image. Next, the effect of uneven illumination is suppressed by using the bilateral gamma function for adaptive illumination correction. The experimental results depict that the proposed approach achieves better enhancement than the existing approaches, even in a high-turbidity environment.
quadrature lock-in discrimination clear vision scattering retinex uneven illumination 
Chinese Optics Letters
2023, 21(10): 101102
Author Affiliations
Abstract
1 School of Physics and Optoelectronic Engineering, Xidian University, Xi’an 710071, China
2 Xi’an Key Laboratory of Computational Imaging, Xi’an 710071, China
3 Key Laboratory of Optical Engineering, Chinese Academy of Sciences, Chengdu 610209, China
This paper presents a polarization descattering imaging method for underwater detection in which the targets have nonuniform polarization characteristics. The core of this method takes the nonuniform distribution of the polarization information of the target-reflected light into account and expands the application field of underwater polarization imaging. Independent component analysis was used to separate the target light and backscattered light. Theoretical analysis and proof-of-concept experiments were employed to demonstrate the effectiveness of the proposed method in estimating target information. The proposed method showed superiority in accurately estimating the target information compared with other polarization imaging methods.
polarization imaging clear vision scattering 
Chinese Optics Letters
2021, 19(11): 111101

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!