作者单位
摘要
1 湖北汽车工业学院材料科学与工程学院, 十堰 442002
2 储能与动力电池湖北省重点实验室, 十堰 442002
以钼硫摩尔比为1:15的钼酸钠和硫脲为原料, 采用高温固相法结合球磨的方法制备二硫化钼(MoS2)纳米片并用于超级电容器。利用热重-差示扫描量热、X射线衍射和扫描电子显微镜对样品的热稳定性、物相及微观形貌进行表征, 并采用循环伏安(CV)、恒流充放电(GCD)和电化学阻抗(EIS)等技术测试样品的电化学性能。结果表明: 经过750 ℃烧结并于700 r·min-1转速下球磨10 h所制的MoS2层数为88层; 在充放电电流密度为0.5和1 A·g-1条件下, 该样品比电容分别为82.4和60.9 F·g-1(优于球磨前的54.6和24.0 F·g-1), 经过2 000次充放电循环, 比电容保持率达92.4%。
二硫化钼 高温固相法 超级电容器 电化学性能 比电容 球磨 molybdenum disulfide high-temperature solid-phase method supercapacitor electrochemical performance specific capacitance ball milling 
人工晶体学报
2023, 52(4): 663
作者单位
摘要
1 西安热工研究院有限公司, 西安 710054
2 西安理工大学, 西安 710048
设计能够有效利用多种能源的新型压电催化剂, 有助于解决当前环境修复和能源需求增加的挑战。以MoO3、KSCN及NaF为起始原料, 采用一步无模板水热法成功制备一种具有高表面活性和优异压电特性的MoS2中空微球, 分别探讨了水热温度、水热时间及NaF添加量对制备MoS2中空微球的影响。结果表明: 当水热温度为220 ℃、水热时间为16 h、NaF添加量为12 mmol时, 制备的样品是粒径为0.5~1.0 μm的1T相MoS2中空微球。N2吸附-脱附实验表明, MoS2微球的比表面积为57.67 m2/g, 孔径主要分布在2~6 nm之间, 平均孔径为4.25 nm。揭示了MoS2中空微球形成机理, 并探讨了其压电催化降解动力学规律。通过压电催化降解模拟污染物评价了MoS2中空微球的催化性能。在超声振动下, 60 s对亚甲基蓝和罗丹明B的降解率分别为89.3%和98.9%。应用于水体抗生素的降解, 120 s对环丙沙星的降解率为94.7%。
二硫化钼 中空微球 无模板水热法 压电催化 抗生素降解 molybdenum disulfide hollow microspheres template-free hydrothermal method piezocatalysis antibiotics degradation 
硅酸盐学报
2023, 51(4): 991
作者单位
摘要
云南师范大学可再生能源材料先进技术与制备教育部重点实验室,云南 昆明 650500
二硫化钼量子点(MoS2 QDs)因具有尺寸可控、量子限域效应强等优异的物化特性,故在传感、荧光检测和光催化等领域中具有潜在的应用价值。以钼酸铵为钼源,以谷胱甘肽为硫源,采用一步水热法合成水溶性好、尺寸均一的MoS2 QDs(MoS2 QDs-1)。为探究不同硫源对MoS2 QDs尺寸和光学性能的影响,又以钼酸铵和L-半胱氨酸分别为钼源和硫源,通过相同方法制备MoS2 QDs(MoS2 QDs-2)。研究了MoS2 QDs-1和MoS2 QDs-2样品的结构和光致发光性能。结果表明,与MoS2 QDs-2样品相比,MoS2 QDs-1样品的平均晶粒尺寸更小(3.88 nm)、平均晶粒高度更低(4.75 nm)、光学带隙更小(3.65 eV)和荧光量子产率更高(10.8%)。
量子光学 二硫化钼量子点 水热法 光致发光 光学带隙 
光学学报
2023, 43(2): 0227002
作者单位
摘要
1 北京交通大学物理科学与工程学院, 物理系, 北京 100044
2 北京交通大学物理科学与工程学院, 微纳材料及应用研究所, 北京 100044
二硫化钼(MoS2)在环境中的热稳定性和化学稳定性好, 迁移率相对较高, 已应用于气体传感器、光电探测器和场效应管等器件的研制。采用氧气辅助技术生长的氧掺杂MoS2(MoS2-xOx)不仅可以调控MoS2单晶尺寸, 还能提高MoS2单晶光致发光强度。本文采用射频反应磁控溅射技术、自然环境中氧化和热退火工艺, 改变溅射羽辉与玻璃基底夹角来制备MoS2-xOx薄膜并研究其光学性质。采用X射线光电子能谱分析了样品的元素和价态; 扫描电子显微镜观测的结果表明, 溅射羽辉与基底成45°(θ=45°)时表面形貌为最优; 紫外-可见分光光度计的测试结果表明, 随着厚度和氧含量的增加, MoS2-xOx薄膜的光学带隙减小; 采用COMSOL Multiphysics软件模拟了MoS2-xOx薄膜光学透过率, 理论和实验结果相吻合。本文的研究结果将为MoS2-xOx薄膜在光学领域的应用提供科学参考。
掺氧二硫化钼 氧气辅助技术 磁控溅射 羽辉 透过率 光学带隙 oxygen-doped molybdenum disulfide oxygen-assisted technology magnetron sputtering plume transmittance optical band gap COMSOL COMSOL 
人工晶体学报
2022, 51(11): 1871
焦永欣 1,*王姝 1,2殷佳楠 1孙宇 1[ ... ]刘玉普 1
作者单位
摘要
1 哈尔滨理工大学理学院,哈尔滨 150080
2 佛山(华南)新材料研究院,广东 佛山 528200
开发利用太阳能解决日益严重的环境危机迫在眉睫,为了提高对太阳光的利用率和光催化剂的性能,采用原位生长并结合表面静电吸附的方法制备三元复合材料,先利用水热合成MoS2/RGO二元异质结复合材料,再根据材料等电点调变溶液pH值制造MoS2与Fe2O3表面电荷同性、而与RGO表面电荷异性,进而构筑MoS2/RGO/Fe2O3全固态Z-Scheme光催化剂。通过扫描电镜和透射电子显微镜观察发现,MoS2纳米花球和Fe2O3纳米颗粒均匀分布在二维片层结构的电子介体RGO表面,MoS2和Fe2O3分别与RGO形成稳定的异质结构,充分证明此种方式构建复杂三元复合材料的可行性。RGO基全固态Z-Scheme光催化剂在模拟太阳光照射下具有优异的光催化还原降解性能,以无机重金属Cr (VI)溶液作为降解指示剂,60min内全固态Z-Scheme光催化剂中活性最佳的为MR0.43F试样,其光还原降解效率是二元复合材料MoS2/RGO的1.5倍。这种全固态Z-Scheme光催化剂兼具宽光谱吸收、高效光生载流子分离效率和表面化学反应效率,改性后的光催化性能得到显著提升,这一光催化设计路线为水环境处理及清洁能源制备提供了新方向。
还原氧化石墨烯 二硫化钼 三氧化二铁 光催化 reduced graphene oxide molybdenum disulfide ferric oxide photocatalyst 
硅酸盐学报
2022, 50(5): 1263
作者单位
摘要
1 中国计量大学材料与化学学院,杭州 310018
2 中国计量大学理学院,杭州 310018
3 中国计量大学材料与化学学院,杭州 310018,
金属相二硫化钼(1T-MoS2),因其特殊的结构和丰富的活性位点等出众的性质引起了广泛关注,是目前研究最多的二维过渡金属硫化物(TMDs)材料之一,其在催化、传感器、电池和超级电容器等领域具有广泛的应用前景。针对近年来1T-MoS2及其复合材料在制备、结构调控和光催化应用方面的研究进展进行了综述。1) 简述1T-MoS2的基本特性及结构调控;2) 总结1T-MoS2及其复合材料的制备方法与进展;3) 介绍1T-MoS2及其复合材料在光催化中的应用;4) 对1T-MoS2材料进行总结与展望。
金属相二硫化钼 复合材料 结构调控 光催化技术 metallic phase molybdenum disulfide composite materials structure modification photocatalytic technology 
硅酸盐学报
2022, 50(1): 194
作者单位
摘要
1 上海工程技术大学机械与汽车工程学院, 上海 201620
2 东华大学材料科学与工程学院, 上海 201620
随着半导体技术的广泛应用, 低维纳米材料及其范德瓦尔斯异质结以其独特的结构、优异的性能以及广阔的潜在应用前景而得到广泛关注。二维过渡金属二硫化物(Transition Metal Dichalcogenide Family of Materials, TMDs)的出现, 为解决石墨烯材料带隙设计问题提供了新思路和新方案。主要介绍了二硫化钼及其与金属氧化物、金属颗粒、低维碳材料、MXenes等材料耦合形成的异质结材料的合成技术。综述了二硫化钼及其范德瓦尔斯异质结材料在新能源领域、光电子领域的应用。最后, 展望了二硫化钼及其范德瓦尔斯异质结材料与金属等离子体纳米结构组成的新型复合材料及其在光电领域的应用潜力。
二硫化物 异质结 电催化 光热效应 光电器件 molybdenum disulfide heterjunction electrocatalysis photothermal effect optoelectronic device 
光学与光电技术
2022, 20(4): 66
作者单位
摘要
金堆城钼业股份有限公司技术中心,西安 710077
以三氧化钼和硫为原料,采用Ar气保护固相合成法,合成花状二硫化钼。采用XRD、SEM、TEM等手段对样品的结构和形貌进行表征。考察了原料比、反应温度、反应时间、升温速率对样品纯度的影响,制备出纯度较高的二硫化钼。结果表明:当MoO3与S物质的量之比为1∶7.5,反应温度为450 ℃,反应时间为4 h,升温速率为15 ℃/min,可得到纯度为99.4%的花状二硫化钼,该花状结构由厚度为10 nm左右的翘曲片层组成,TEM照片中可见0.62 nm单层二硫化钼结构,具有较大的比表面积,使其在储能、催化等领域有广阔的应用前景。
二硫化钼 花状结构 固相合成法 纯度 比表面积 二维材料 molybdenum disulfide flower-like structure solid-state method purity specific surface area two dimension material 
人工晶体学报
2022, 51(8): 1445
作者单位
摘要
1 华东师范大学 物理与电子科学学院,材料科学系,纳光电集成与先进装备教育部工程研究中心,上海市极化材料多功能磁光光谱技术服务平台,上海 200241
2 复旦大学 上海智能电子与系统研究院,上海 200433
报导了在c-Al2O3衬底上用脉冲激光沉积法制备MoS2薄膜,并测试了其不同温度下的光响应。通过拉曼散射光谱和X射线衍射光谱证明了所制备的二硫化钼为纯2H相。通过X光电子能谱证明了所制备的二硫化钼硫钼原子比为1.92:1,在Mo元素的3d核心能级谱中存在红移和蓝移,说明薄膜中存在氧化和硫缺陷。此外,通过拉曼和光致发光分布图,证明了薄膜具有良好的均一性。在不同层数的二硫化钼样品中,单层二硫化钼样品具有最强的光响应,达到3 mAW-1。单层二硫化钼的变温光响应实验表明,在室温附近,温度升高会提高二硫化钼的光响应强度和响应时间。
二硫化钼 脉冲激光沉积 光致发光 光响应 molybdenum disulfide pulsed laser deposition photoluminescence photoresponse 
红外与毫米波学报
2021, 40(3): 302
Author Affiliations
Abstract
MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, Key Laboratory of Light-Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an 710129, China
We present the perfect light absorption of monolayer molybdenum disulfide (MoS2) in a dielectric multilayer system with two different Bragg mirrors. The results show that the strong absorption of visible light in monolayer MoS2 is attributed to the formation of optical Tamm states (OTSs) between two Bragg mirrors. The MoS2 absorption spectrum is dependent on the layer thickness of Bragg mirrors, incident angle of light, and the period numbers of Bragg mirrors. Especially, the nearly perfect light absorption (99.4%) of monolayer MoS2 can be achieved by choosing proper period numbers, which is well analyzed by the temporal coupled-mode theory.
optical Tamm states molybdenum disulfide light absorption 
Chinese Optics Letters
2021, 19(10): 103801

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!