作者单位
摘要
1 1.贵州梅岭电源有限公司 特种化学电源全国重点实验室, 遵义563003
2 2.南昌工学院 机械与车辆工程学院, 南昌 330108
氧还原反应(ORR)是燃料电池阴极重要的电化学反应过程, 其自发反应进程缓慢, 对氧还原反应起高效催化作用的催化剂面临价格昂贵、合成流程复杂、污染环境等问题, 因此探索合成简单、环境友好的氧还原催化剂制备方法具有重要意义。铁氮共掺杂介孔碳材料(Fe-N/MC)是一种有巨大应用价值的非贵金属氧还原反应催化剂。本工作通过在马弗炉中的半封闭体系内高温碳化小分子前驱体得到介孔碳材料(MCM), 再把获得的MCM与铁盐混合在管式炉中高温处理制备得到铁氮共掺杂介孔碳材料(Fe-N/MCMT)。该方法热解条件简单, 无需模板剂和NH3、HF等有毒物质。由于MCM含有较高的氮和氧元素, 有利于提升介孔碳材料表面的亲水性和配位能力, 通过MCM和铁盐制备出的Fe-N/MCMT含有丰富的、催化ORR的Fe-Nx活性位点, 其起始电位和半波电位分别为0.941和0.831 V (vs RHE), 比商业化Pt/C催化剂的起始电位和半波电位分别正34和16 mV。氧还原反应按照反应过程分为二电子过程和四电子过程, Fe-N/MCMT和Pt/C的转移电子数分别为3.77和3.91, 表明具有四电子反应过程。
铁氮共掺杂介孔碳 氧还原反应 半封闭体系 催化剂 iron-nitrogen co-doped mesoporous carbon oxygen reduction reaction semi-containment system catalyst 
无机材料学报
2023, 38(11): 1309
作者单位
摘要
中国科学院化学研究所有机固体实验室,北京 100190
碳基材料一直被认为是替代贵金属氧还原反应(ORR)催化剂的最有潜力的材料。其中,石墨炔作为一种新的碳同素异形体,由于同时具有sp和sp2杂化的碳原子以及单原子层厚度的二维平面结构,因此在具有碳基材料固有的导电性和稳定性的同时,石墨炔基材料表现出更高的本征电化学活性。本文综述了目前用于电化学氧还原催化的各种石墨炔基催化材料合成的最新进展和成果,并从其电子结构和催化活性等角度分析了石墨炔基碳材料在氧还原催化应用方面的优势。最后,对石墨炔基碳材料在电化学氧还原催化方面研究的前景和面临的挑战进行了概述,为实现高质量石墨炔基无机非金属氧还原催化剂的设计合成提供了新的思路。
石墨炔 催化剂 电催化 氧还原反应 能量转换 graphdiyne catalyst electrocatalysis oxygen reduction reaction energy conversion 
硅酸盐学报
2023, 51(9): 2362
任志立 1,*段磊 1徐守冬 1陈良 2[ ... ]张鼎 3
作者单位
摘要
1 太原理工大学化学工程与技术学院, 太原 030024
2 太原理工大学化学学院, 太原 030024
3 武汉工程大学化工与制药学院, 武汉 430205
金属有机框架材料(MOFs)是一种制备过渡金属-氮-碳(M-N-C)氧还原电催化材料的有效前驱体, 但在热解过程中结构坍塌等问题限制了其实际应用。本研究通过表面活性剂F-127包覆以及Zn掺杂对ZIF-67进行改性, 并对改性后的Zn-ZIF-67@F-127在氩气气氛下进行热解, 制得结构完整的Co-N-C载体。通过在Co-N-C载体表面进行Pt的负载, 制备了Pt/Co-N-C复合氧还原反应(ORR)催化剂, 并对其在碱性电解液中的ORR催化性能进行了探究。实验结果表明, F-127的加入提高了Zn-ZIF-67@F-127在热解过程中的形貌保持率, Pt/Co-N-C在O2饱和的0.1 mol·L-1 KOH中, 催化剂的起始电位、半波电位、极限扩散电流密度分别为1.027 V、0.836 V和5.51 mA·cm-2, 与商用20% Pt/C性能相近。Pt与Co-N-C的协同作用使得催化剂不仅对ORR的四电子路径显示出高选择性, 更在计时电流测试中表现出接近于商用20% Pt/C的稳定性与较商用20% Pt/C更优的抗甲醇性能。
Pt/Co-N-C电催化材料 氧还原反应 碱性电解液 抗甲醇性能 Pt/Co-N-C electrocatalytic material oxygen reduction reaction ZIF-67 ZIF-67 F-127 F-127 alkaline electrolyte methanol resistance performance 
人工晶体学报
2023, 52(4): 654
邓晓婷 1,2,*李振溱 2,3姚启文 1尹绍峰 1[ ... ]刘峰 4
作者单位
摘要
1 邵阳学院食品与化学工程学院,邵阳 422000
2 中南大学粉末冶金研究院,长沙 410083
3 广东氢发新材料科技有限公司,佛山 528000
4 昆明贵金属研究所铂金属综合利用先进技术国家重点实验室,昆明 650106
采用喷涂或转印方法制备的质子交换膜燃料电池催化层存在活性不均匀或活性位点易失效的问题。本研究用静电纺丝法制备高导电性的柔性碳纳米纤维薄膜,然后将析氢电位较高的Cu以脉冲电沉积的方式均匀沉积到纤维膜上,制备出Cu纳米晶/碳纳米纤维膜,最后通过原位置换还原,合成Cu@PtCu/碳纳米纤维(Cu@PtCu/CNF)催化薄膜。Cu@PtCu/CNF催化薄膜解决了催化层活性不均的问题,且可以直接作为催化层使用。采用 SEM、XRD、XPS 等对其形貌、结构进行了表征。电化学测试结果表明,在pH=4、氯铂酸浓度为0.25 mg·mL-1时获得的Cu@PtCu/CNF催化薄膜,其面积比活性为49 m2·g-1。在5 000个循环的稳定性测试后,电化学活性比表面积保持74%,半波电位下降了9 mV,均优于商业Pt/C催化剂。
催化剂薄膜 碳纳米纤维膜 静电纺丝 电沉积 氧还原反应 catalyst film carbon nanofiber film electrospinning electrodeposition oxygen reduction reaction Cu@PtCu Cu@PtCu 
人工晶体学报
2023, 52(2): 345
作者单位
摘要
国防科技大学 空天科学学院, 新型陶瓷纤维及其复合材料重点实验室, 长沙 410073
氧还原(ORR)反应是燃料电池等清洁能源阴极的关键反应, 其反应动力学复杂, 阴极需使用Pt等贵金属催化剂。然而Pt价格昂贵, 且载体炭黑在高电位环境下稳定性欠佳, 导致电池部件成本高且寿命短。二维过渡金属硫属化合物(2D TMDs)具有高比表面积与可调节的电学性能, 且稳定性强, 有望在维持活性的同时提高燃料电池阴极的耐久性。本文梳理了近年来2D TMDs在ORR催化剂领域的最新研究进展: 首先概述了2D TMDs的结构、性质及ORR反应机理; 其次分析了调控2D TMDs的ORR性能策略, 包括异质元素掺杂、相转变、缺陷工程与应力工程等, 介绍了2D TMDs基异质结构对ORR性能的提升作用; 最后, 针对该领域目前存在的挑战进行展望与总结。
氧还原反应 二维材料 过渡金属硫属化合物 电催化 综述 oxygen reduction reaction two-dimensional material transition metal dichalcogenide electrocatalysis review 
无机材料学报
2022, 37(7): 697
作者单位
摘要
1 华南农业大学工程学院,广州 510642
2 岭南现代农业科学与技术广东省实验室,广州 510642
3 广东省燃料电池技术重点实验室,广州 510641
质子交换膜燃料电池是一种高效清洁的发电技术,具有反应动力学快、启动温度低等特点。目前质子交换膜燃料电池技术发展迅速,有望得到广泛推广和普及。本文从质子交换膜燃料电池核心组件出发,对近年来质子交换膜燃料电池的发展进行了简要概述。从材料出发,对核心组件进行分类,详细介绍了质子交换膜、催化剂以及气体扩散层的研究现状和技术特点,综述了各组件的研究方法、改进方法以及研究进展,展望了质子交换膜燃料电池的研究方向和未来发展趋势。基于高温环境下的各种优势,具有短侧链、低当量的且适用于高温低湿环境的质子交换膜仍将是重点研究对象。质子交换膜燃料电池将进一步向低Pt甚至无Pt方向发展,同时未来将实现无增湿条件下的水平衡。
燃料电池 质子交换膜 聚合物膜材料 气体扩散层 氧还原催化剂 氧还原反应 fuel cell proton exchange membrane polymer membrane material gas diffusion layer oxygen reduction catalyst oxygen reduction reaction 
硅酸盐通报
2022, 41(9): 3243
作者单位
摘要
南京理工大学 软化学与功能材料教育部重点实验室, 南京 210094
电化学氧还原反应(ORR)在能源、催化等领域具有广阔的应用前景, 因此开发性能优异、选择性高的催化剂对于促进ORR发展具有重要意义。ORR反应按照反应过程可以分为二电子反应过程和四电子反应过程。本研究以化学修饰石墨烯为原料, 通过调控其表面缺陷并与银-对苯二琨二甲烷(Ag-TCNQ)纳米点复合, 合成了不同缺陷程度的复合催化剂, 在此基础上比较了Ag-TCNQ/高缺陷石墨烯和Ag-TCNQ/低缺陷石墨烯的ORR性能。研究结果显示Ag-TCNQ/高缺陷石墨烯催化ORR的电子转移数为2.4, 双氧水产率达0.62 mg/h, 法拉第效率为64.45%。相比之下, Ag-TCNQ/低缺陷石墨烯参与ORR的电子转移数为3.7, 氧还原半波电位约为0.7 V(vs. RHE)。因此, 高缺陷催化剂促进ORR的二电子过程, 而低缺陷的催化剂促进ORR的四电子过程。在复合材料中, Ag-TCNQ纳米颗粒和石墨烯发挥了各自的结构优势, 形成复合效应, 共同提高了催化活性。
石墨烯 缺陷调控 银-7,7,8,8-四氰基苯醌二甲烷 氧还原反应 graphene defect engineering Ag-7,7,8,8-tetracyanoquinodimethane oxygen reduction reaction 
无机材料学报
2021, 37(2): 215
朱勇 1顾军 1,2,*于涛 1,3何海佟 1姚睿 1
作者单位
摘要
1 1. 南京大学 物理学院, 南京 210093
2 2. 南京东焱氢能源科技有限公司, 南京 211100
3 3. 南京大学 固体微结构物理国家重点实验室, 南京 210093
研制高活性的电催化剂是实现质子交换膜燃料电池的商业化应用必须解决的关键技术之一。本研究以三乙胺为碱性络合剂、硼氢化钠为还原剂, 采用液相合成法制备PtCo纳米合金电催化剂, 再通过高温热处理实现最佳电化学性能。采用各种表征方法对催化剂的微观结构及电化学性能进行测定, 探究硼氢化钠、三乙胺的添加量及高温热处理对催化剂电化学性能的影响。结果显示, 适量的硼氢化钠可提升催化剂的电化学活性面积, 三乙胺可以改变催化剂的质量活性, 高温热处理能有效提升催化剂的质量活性, 极大提升催化剂的氧还原反应(ORR)能力; 在同一测试体系下, 添加100 mg硼氢化钠及100 μL三乙胺在500 ℃高温热处理条件下制备的PtCo纳米合金电催化剂的质量活性达到133 mA/mgPt, 是田中贵金属工业株式会社(TKK)商用PtCo合金催化剂的3倍。
电催化剂 PtCo合金 高温热处理 氧还原反应 电化学活性面积 electrocatalyst platinum-cobalt alloy heat-treatment oxygen reduction reaction active specific surface area 
无机材料学报
2021, 36(3): 299
作者单位
摘要
大连理工大学 化工学院 化学系, 精细化工国家重点实验室, 大连 116024
燃料电池能够将化学能转化为电能, 是一种绿色高效的能量转换装置, 但是受到阴极氧还原反应(ORR)动力学迟缓的限制, 燃料电池需要使用Pt等贵金属作为催化剂, 这就导致其成本显著增加。碳基负载单原子催化剂(C-SACs)展现出高原子利用率和高选择性等优异性能。另外, C-SACs在不同pH环境下都显示出优异的ORR催化活性, 被视为贵金属催化剂的经济替代品。本文介绍了近年来提升C-SACs的 ORR催化性能的策略, 包括选择不同种类的金属中心原子, 调控金属中心的配位结构以及对载体进行杂原子掺杂。同时介绍了这些C-SACs在旋转盘电极和电池器件中的性能。最后对C-SACs在实际应用中的可行性以及潜在的挑战进行了展望和总结。
单原子催化剂 氧还原反应 配位环境 杂原子掺杂 综述 single atom catalysts oxygen reduction reaction coordination environment heteroatomic doping review 
无机材料学报
2021, 36(8): 820
作者单位
摘要
大连理工大学 化工学院, 化学系, 大连 116024
单原子催化剂(SACs)以近100%的原子利用率以及优秀的催化活性等, 在促进多相催化方面受到了广泛关注。然而, 由于金属原子在高温下易烧结, SACs的合成仍然具有挑战性。本研究利用熔融盐(MS)提供的强极性环境, 制备了以氮掺杂碳为载体的铁基单原子催化剂(Fe SA-NC)。结果表明, Fe SA-NC显示出蜂窝状的多孔形貌, 比表面积高达2072 m2·g-1, 其中Fe元素的重量百分比含量为0.57%。通过球差电镜直接观察到了孤立存在的Fe单原子, 并通过X射线吸收精细结构(XAFS)分析确定Fe单原子以Fe-N4配位体形式分散在碳基材料上。Fe SA-NC催化剂在0.1 mol/L KOH 溶液中半波电位为0.85 V, 极限电流密度为5.79 mA·cm-2, 优于商业Pt/C催化剂。Fe SA-NC催化剂不仅对ORR四电子途径显示出高选择性(H2O2产率<2%, 转移电子数为3.9), 同时表现出优秀的抗甲醇性能。
单原子催化剂 多孔 氮掺杂碳 氧还原反应 single atom catalyst porous nitrogen-doped carbons oxygen reduction reaction 
无机材料学报
2020, 36(9): 943

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!