包涵 1,2张涌 1,*
作者单位
摘要
1 中国科学院深圳先进技术研究院,广东 深圳 518055
2 国微集团(深圳)有限公司,广东 深圳 518057
掩模吸收层厚度引起的散射效应会导致深紫外和极紫外光刻成像产生偏差。传统光刻模型建立在满足薄掩模近似的Hopkins成像理论上,但随着掩模上吸收层的高宽比增大,掩模厚度成为衍射计算中不可忽略的因素。为实现对空间像的精准预测,提出一种三维掩模成像模型,利用严格电磁学仿真生成的掩模衍射近场来修正Hopkins模型结果。严格电磁学仿真需要的计算开销可以通过一种基于旋转变换和仿真维度减少的快速掩模边沿近场生成方法来减少。因此,将三维掩模成像模型和快速衍射近场生成方法结合后可以快速构建精准的三维掩模光刻成像模型。
计算光刻 光学邻近矫正 三维掩模模型 时域有限差分法 
光学学报
2023, 43(13): 1320004
作者单位
摘要
北京理工大学光电学院,北京 100081

计算光刻是极大规模集成电路(IC)制造的核心技术之一。随着IC节点的不断下移,对于工艺的要求越来越严苛。计算光刻技术对推进光刻工艺进步做出了巨大贡献。然而,尽管计算机技术的发展为计算光刻技术的进步提供了有力的支持,但是计算光刻速度和精度之间互制的难题,考虑光刻系统、掩模、工艺误差情况下的计算光刻研究,仍需要学术团队与工业研发团队协同攻关。在简单回顾计算光刻的重要里程碑节点的基础上,重点概述作者团队在“先进计算光刻:快速、高稳定计算光刻”的研究进展,包括矢量计算光刻、快速计算光刻和多目标-高稳定矢量计算光刻。最后,对未来计算光刻技术的发展做出了展望,并期望本文能对我国集成电路领域的研发人员和工程师有所帮助。

光刻 计算成像 逆向光刻 计算光刻 分辨率增强技术 
激光与光电子学进展
2022, 59(9): 0922009
马旭 1,*张胜恩 1潘毅华 1张钧碧 1[ ... ]韦亚一 2,3,**
作者单位
摘要
1 北京理工大学光电学院,光电成像与系统教育部重点实验室,北京 100081
2 中国科学院微电子研究所先导工艺研发中心,北京 100029
3 中国科学院大学微电子学院,北京 100049

光刻是将集成电路器件的结构图形从掩模转移到硅片或其他半导体基片表面上的工艺过程,是实现高端芯片量产的关键技术。在摩尔定律的推动下,光刻技术跨越了90~7 nm及以下的多个工艺节点,逐步逼近其分辨率的物理极限。同时,光刻系统的衍射受限特性,以及各类系统像差、误差和工艺偏差,都会严重影响光刻成像精度。此时,必须采用计算光刻技术来提高光刻成像分辨率和图形保真度。计算光刻是涉及光学、半导体技术、计算科学、图像与信号处理、材料科学、信息学等多个专业的交叉研究领域。它以光学成像和工艺建模为基础,采用数学方法对光刻成像过程进行全链路的仿真与优化,实现成像误差的高精度补偿,能够有效提升工艺窗口和芯片制造良率,降低光刻工艺的研发周期与成本,目前已成为高端芯片制程的核心环节之一。本文首先简单介绍了计算光刻的前身,即传统的分辨率增强技术,在此基础上介绍了计算光刻的基本原理、模型和算法。之后对光学邻近效应校正、光源优化和光源掩模联合优化三种常用的计算光刻技术进行了综述,总结了相关的研究进展、成果和应用。最后,阐述了计算光刻当前所面临的需求与挑战,并讨论了最新技术进展和未来发展方向。

计算光刻 分辨率增强技术 先进半导体制造工艺 光学光刻 计算光学 光电图像处理 
激光与光电子学进展
2022, 59(9): 0922008
作者单位
摘要
1 中国科学院上海光学精密机械研究所信息光学与光电技术实验室,上海 201800
2 中国科学院大学材料与光电研究中心,北京 100049

光刻机是极大规模集成电路制造的核心装备,深紫外光刻机是用于先进技术节点芯片制造的主流光刻设备。光刻机的成像质量直接影响光刻机性能指标,是光刻机正常工作的前提。作为提高光刻成像质量的重要手段,计算光刻技术在光刻机软硬件不变的条件下,采用数学模型和软件算法对照明光源、掩模图形和工艺参数等进行优化,使目标图形高保真度地成像到硅片上。光刻成像模型是计算光刻技术的基础,成像模型仿真精度和速度的不断提高支撑了计算光刻技术的发展。结合本团队的研究工作,介绍了光刻成像模型的发展,总结了光学邻近效应修正技术、光源掩模优化技术和逆向光刻技术这三种主要计算光刻技术的研究进展。

深紫外光刻 计算光刻 光源掩模优化 光学邻近效应修正 逆向光刻技术 
激光与光电子学进展
2022, 59(9): 0922007
作者单位
摘要
1 东方晶源微电子科技(北京)有限公司,北京 100176
2 中芯北方集成电路制造(北京)有限公司,北京 100176
3 中国科学院上海光学精密机械研究所信息光学与光电子技术实验室,上海 201800

计算光刻技术是提高分辨率的重要手段,是连接芯片设计与制造的桥梁。首先,介绍了计算光刻技术的起源即第1代光学邻近效应校正(OPC)技术,基于规则的OPC;随后,以14 nm芯片制造过程为例介绍了现代芯片制造采用的各种计算光刻技术,包括基于模型的第2代OPC技术、光源掩模联合优化技术、二次成像图形拆分技术。最后,介绍了计算光刻的发展趋势,包括反向光刻技术、曲线掩模、人工智能应用及协同优化。综合芯片设计、制造、检测的集成优化将是未来计算光刻发展的主要方向。

计算光刻 光学邻近效应校正 全景优化 反向光刻 
激光与光电子学进展
2022, 59(9): 0922001
作者单位
摘要
北京理工大学 光电学院 光电成像技术与系统教育部重点实验室, 北京 100081
计算光刻是提高光刻成像性能的有效方法。但是, 大多数计算光刻技术建立在理想光刻系统下而忽略了系统误差的影响。系统误差中的工件台振动会导致光刻图形误差增大和工艺窗口下降。因此, 必须要降低工件台振动对光刻性能的影响。建立了一种对工件台振动低敏感的光刻系统协同优化方法。首先利用Zernike多项式表征光源来降低算法计算量并提高光源优化自由度。然后创建一项涵盖工件台振动影响的综合评价函数。最后采用基于梯度的统计优化算法建立优化流程。14 nm节点一维掩模图形仿真表明极端工件台振动下, 该方法的特征尺寸误差降低28.7%, 工艺窗口增大67.3%。结果证明该方法可以有效降低工件台振动敏感度并提高光刻工艺稳定性。
深紫外光刻 分辨率增强技术 协同优化 计算光刻 deep ultraviolet lithography resolution enhancement techniques holistic optimization computational lithography 
红外与激光工程
2019, 48(12): 1215001

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!