激光与光电子学进展, 2017, 54 (11): 113102, 网络出版: 2017-11-17  

PECVD技术在微结构表面沉积薄膜的复形性 下载: 574次

Reproducibility of Thin Films Deposited on Microstructure Surface by PECVD Technology
作者单位
西安工业大学光电工程学院, 陕西 西安 710021
摘要
采用光刻技术、刻蚀技术和等离子体增强化学气相沉积(PECVD)技术,在线阵掩模微结构表面沉积了SiO2和Si3N4薄膜,研究了线阵掩模的宽度和厚度,以及薄膜的厚度和沉积速率对SiO2和Si3N4薄膜复形性的影响,制备得到了具有良好微结构形貌的微结构滤光片阵列。结果表明,薄膜沉积速率越大,薄膜的复形性越好;掩模厚度和薄膜沉积厚度的增加会导致薄膜的复形性变差;SiO2薄膜的复形性优于Si3N4薄膜的。
Abstract
The thin films of SiO2 and Si3N4 are deposited on the microstructure surface of a linear array mask by the techniques of photolithography, etching and plasma enhanced chemical vapor deposition (PECVD). The influences of the width and thickness of the linear array mask, as well as the film thickness and deposition rate on the reproducibility of SiO2 and Si3N4 films are investigated. A microstructure filter array with a good microstructure is prepared. The results show that the larger the film deposition rate is, the better the film reproducibility is. The increases of mask thickness and film deposition thickness lead to the deterioration of thin film reproducibility. The reproducibility of SiO2 films is better than that of Si3N4 films.
参考文献

[1] 王金成, 匡翠方, 王轶凡, 等. 基于压缩感知的荧光显微多光谱成像[J]. 中国激光, 2013, 40(12): 1204003.

    Wang Jincheng, Kuang Cuifang, Wang Yifan, et al. Multispectral fluorescence microscopic imaging based on compressive sensing[J]. Chinese J Lasers, 2013, 40(12): 1204003.

[2] 王少伟, 陈效双, 陆卫. 集成微腔分光器件及在微型光谱仪中的应用[C]. 上海市红外与遥感学会第十九届学术年会, 2014: 59-65.

    Wang Shaowei, Chen Xiaoshuang, Lu Wei. Integrated-cavities wavelength division devices and their application for micro-spectrometers[C]. The Nineteenth Annual Academic Conference of Shanghai Infrared and Remote Sensing Society, 2014: 59-65.

[3] 张建寰, 刘婷婷, 林珊. 微型化多通道滤光片光谱串扰模型的建立和评价[J]. 光学技术, 2013, 39(6): 540-543.

    Zhang Jianhuan, Liu Tingting, Lin Shan. Spectral crosstalk modeling and evaluation of a micro-arrayed multichannel optical filter[J]. Optical Technique, 2013, 39(6): 540-543.

[4] 刘光明. 表面处理技术概论[M]. 北京: 化学工业出版社, 2011.

    Liu Guangming. Introduction to surface treatment technology[M]. Beijing: Chemical Industry Press, 2011.

[5] 陈晟, 马艳, 张萍萍, 等. 原子纳米光刻中双层光学掩膜的实现方法研究[J]. 红外与激光工程, 2014, 43(7): 2070-2073.

    Chen Sheng, Ma Yan, Zhang Pingping, et al. Production of double-layer light mask in atom nano-lithography[J]. Infrared and Laser Engineering, 2014, 43(7): 2070-2073.

[6] 王少伟, 陈效双, 陆卫. 基于光刻工艺的阶跃滤光片式微型分光器件研制[J]. 光学学报, 2009, 29(5): 1358-1362.

    Wang Shaowei, Chen Xiaoshuang, Lu Wei. Fabrication of step filter for miniature wavelength-division device based on photolithography[J]. Acta Optica Sinica, 2009, 29(5): 1358-1362.

[7] Gluck N S, Gunning W J. Patterned infrared spectral filter directly deposited onto cooled substrates[J]. Applied Optics, 1989, 28(23): 5110-5114.

[8] 王云姬. 集成滤光微结构的InGaAs短波红外探测器[D]. 上海: 上海技术物理研究所, 2014.

    Wang Yunji. Integrated filter for InGaAs short wave infrared detector[D]. Shanghai: Shanghai Institute of Technical Physics of the Chinese Academy of Sciences, 2014.

[9] Yi D R, Kong L H. Fabrication of densely patterned micro-arrayed multichannel optical filter-mosaic[J]. Journal of Micro-Nanolithography MEMS and MOEMS, 2011, 10(3): 033020.

[10] 程实平, 严义埙, 张凤山, 等. 3通道短波红外光谱可识别列阵探测器的研制[J]. 红外与毫米波学报, 1994, 13(6): 401-404.

    Cheng Shiping, Yan Yixun, Zhang Fengshan, et al. Development of three-channel short-wave IR spectrum distinguishable detector array[J]. Journal of Infrared and Millimeter Waves, 1994, 13(6): 401-404.

[11] Wang S W, Liu D, Lin B, et al. 16×1 integrated filter array in the MIR region prepared by using a combinatorial etching technique[J]. Applied Physics B, 2006, 82(4): 637-641.

[12] 罗海瀚, 李耀鹏, 蔡清元, 等. 组合套镀法制备2.0~2.4 μm波段8通道微型集成滤光片[J]. 中国激光, 2012, 39(11): 1107001.

    Luo Haihan, Li Yaopeng, Cai Qingyuan, et al. Fabrication of 8-channel micro integrated filter in 2.0~2.4 μm by combine masks and plating[J]. Chinese J Lasers, 2012, 39(11): 1107001.

[13] 张建寰, 张陈涛, 卓勇, 等. 多光谱阴道镜的微型化多通道滤光片设计[J]. 光学 精密工程, 2012, 20(9): 2035-2040.

    Zhang Jianhuan, Zhang Chentao, Zhuo Yong, et al. Design of micro-arrayed multichannel optical filter for multispectral colposcope[J]. Optics and Precision Engineering, 2012, 20(9): 2035-2040.

[14] 陶涛, 苏辉, 谢自力, 等. PECVD法氮化硅薄膜生长工艺的研究[J]. 纳米材料与结构, 2010, 47(5): 267-272.

    Tao Tao, Su Hui, Xie Zili, et al. Research on nitride membranes grown by PECVD[J]. Nanomaterial and Structure, 2010, 47(5): 267-272.

[15] 潘永强, 陈佳. 微结构窄带滤光片设计及制备工艺研究[J]. 应用光学, 2017, 38(1): 78-82.

    Pan Yongqiang, Chen Jia. Design and fabrication of microstructure narrowband filter[J]. Journal of Applied Optics, 2017, 38(1): 78-82.

[16] 张霄. PECVD技术制作减反膜研究[D]. 西安: 西安工业大学, 2010.

    Zhang Xiao. Research on anti-reflection coatings by PECVD technology[D]. Xi′an: Xi′an Technological University, 2010.

潘永强, 陈佳. PECVD技术在微结构表面沉积薄膜的复形性[J]. 激光与光电子学进展, 2017, 54(11): 113102. Pan Yongqiang, Chen Jia. Reproducibility of Thin Films Deposited on Microstructure Surface by PECVD Technology[J]. Laser & Optoelectronics Progress, 2017, 54(11): 113102.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!