作者单位
摘要
1 钢铁研究总院, 北京 100081
2 钢研纳克检测技术股份有限公司, 北京 100081
基于检测标准中提供的重复性和时间变化的再现性数据, 通过对其长期稳定性试验中每个时段内测量结果的精密度和正确度, 时段间重复性, 时段间总精密度度, 总平均值的正确度进行检验, 可对分析仪器按照该检测标准进检测的长期稳定性进行系统评价, 其本质是监控分析结果的精密度和正确度。 然而, 实验室大量没有上升为检测标准的检测方法, 即所谓的非标方法, 因缺乏重复性及室内再现性数据, 无法按照上述方法直接进行长期稳定性评价, 但通过实验设计, 在不同时间段对仪器分别进行校正后测量, 可获得非标方法的模拟重复性限和模拟室内再现性限数据。 基于模拟重复性限及模拟室内再现性限数据, 可对非标分析仪器方法长期稳定性进行准确评价。 以辉光放电质谱(GD-MS)测定纯镍中18种杂质元素的非标方法为例, 设计一组对比实验, 获得非标方法的模拟重复性限及模拟室内再现性限数据, 利用卡方统计检验, 获得了辉光放电质谱仪测定纯镍样品中B, Mg, Al, Si等18种杂质元素的准确的长期稳定性时间, 结果表明在相同的测定条件下, 不同元素的长期稳定性不完全相同, 大部分元素可稳定持续测量3 h, P, As, V, Sb和Pb等5个元素的长期稳定性时间上限可达6 h甚至12 h。 在长期稳定性时间上限内, 仪器无需再次进行相对灵敏度因子的测量和校正即可得到准确的测定结果。 这一评价结果与实验室实际经验基本一致, 表明该实验所提出的系统测量和表征方法能客观反映辉光放电质谱仪的长期稳定性。 该方法同样适用于其他非标方法的长期稳定性评价, 对实验室大量的非标方法的质量控制具有指导意义。
辉光放电质谱 非标方法 长期稳定性 正确度 精密度 GD-MS Non-standard test methods Long-term stability Trueness Precision 
光谱学与光谱分析
2023, 43(3): 867
作者单位
摘要
1 钢铁研究总院, 北京 100081
2 钢研纳克检测技术股份有限公司, 北京 100094
搭建热解析富集装置对溶液中的汞富集后进行检测, 可以提高X射线荧光测试的灵敏度。 整个测试过程如下: 样品中的汞在高温下发生热解析, 经过滤膜时被选择性吸附, 在使用光谱仪测试后, 最终计算出样品中汞的含量。 在热解析管路中加入白云石增加停留时间, 可以降低汞的热解还原温度, 在使用汞稳定化剂的条件下, 只需加热到600 ℃就可以实现汞的解析。 对热解析富集的测试条件进行研究, 选择热解析时间和光谱仪器测试时间, 优化进样体积和抽气气流流速。 该方法的测试信号与直接测试相比明显增大, 且随着样品体积的增加而增加, 在进样体积为200 μL时可达到11.78倍。 使用不同浓度的溶液绘制工作曲线, 线性相关系数为0.993 7, 并对含量为0.05 μg·mL-1的溶液进行多次测试, 11次测试的相对标准偏差为4.048%; 对空白溶液进行测试, 计算该方法的检出限为0.004 μg·mL-1, 定量限为0.015 μg·mL-1; 配制混合溶液, 研究其他离子对待测离子的干扰, 结果表明, 在其他离子含量是待测离子100倍的条件下, 对汞的测试没有影响; 采集生活中的河流水和自来水, 测试该方法的加标回收率在94.3%~102.6%之间。 使用该装置对溶液中的汞富集后进行测试, 可以提高X射线荧光测试的检出限, 实现污水中重金属汞的检测。
能量色散X射线荧光光谱法  热解析-富集 污水 Energy dispersive X-ray fluorescence Mercury Thermal desorption-enrichment Sewage 
光谱学与光谱分析
2022, 42(4): 1117
作者单位
摘要
1 钢铁研究总院, 北京 100081
2 钢研纳克检测技术股份有限公司研究院, 北京 100094
3 长春理工大学空间光电技术研究所, 长春 130012
针对目前手持拉曼的微型光谱仪的光谱范围较窄, 光谱分辨率较差, 体积较大等技术短板, 提出一种用于手持拉曼的宽谱段高分辨分光系统设计方法。在综合考虑安装调试及性能基础上, 创新性采用楔形柱面镜消除像散, 既保证了信号强度又便于机械安装。在约束不同波长经过光栅衍射后, 出射光束口径变化的前提下, 利用交叉式非对称Czerny-Turner光路结构的像差特性, 实现全谱范围内的慧差矫正。基于ZEMAX软件对光谱仪结构进行仿真和优化, 并完成了样机研制, 样机尺寸为72mm×43mm×62mm。采用氦-氖灯对其性能进行了测试, 结果表明: 分辨率优于6cm-1、拉曼光谱范围150~4000cm-1,验证了该微型光谱仪系统光学设计的可行性和合理性。
光谱仪 光学设计 交叉式非对称Czerny-Turner结构 拉曼 spectrometer optical design crossed asymmetric Czerny Turner structure Raman 
光学技术
2022, 48(6): 641
作者单位
摘要
1 钢铁研究总院, 北京 100081
2 钢研纳克检测技术股份有限公司, 北京 100081
拉曼光谱技术作为探究分子、 晶体及其结构特征的有力手段, 具有快速、 无损、 样品用量小、 无需前处理且适应性强等优点, 已被广泛应用于食品安全、 石油化工等领域。 但在拉曼光谱应用中, 常常受到荧光背景干扰, 导致拉曼信号降低, 严重的情况下拉曼信号甚至会淹没在荧光背景中。 为解决拉曼技术在实际应用中荧光背景干扰的问题, 从仪器角度出发, 采用二色镜对多波长拉曼光谱进行光路耦合设计, 研制了近红外拉曼光谱与移频差分拉曼复合一体的多波长消荧光拉曼光谱检测系统, 其中近红外拉曼光谱采用1 064 nm激光光源设计, 移频差分拉曼光谱选取784.5和785.5 nm两组激光光源进行时分复用, 在移频差分拉曼光谱检测的同时, 亦可获得两组单波长拉曼光谱数据。 通过对比同步测试和分时逐次测试的强度及峰位稳定性, 验证了多波长消荧光拉曼光谱仪的同步测试性能; 选取了多种荧光背景强弱不同的样品, 进行了单波长拉曼、 近红外拉曼及移频差分拉曼光谱的对比分析。 针对丙酮、 乙腈等荧光背景较弱的样品, 可采用单波长拉曼光谱对样品进行定量及定性分析; 针对食用油、 红色塑胶微粒等荧光背景与拉曼信号强度相当的样品, 可采用近红外拉曼光谱对样品进行定量及定性分析; 针对红酒、 棕色塑胶微粒等荧光背景较强的样品, 需结合近红外拉曼光谱和差分拉曼光谱对样品进行定性分析。 研究表明: 通过多波长消荧光拉曼光谱检测系统的研制, 在常规单波长拉曼光谱技术的基础上, 将两种抑制荧光干扰技术有机结合, 有效扩充了应用领域及样品检测范围。
拉曼光谱 移频差分拉曼 近红外拉曼 Raman spectra Shift differential Raman Near infrared Raman 
光谱学与光谱分析
2022, 42(1): 86
作者单位
摘要
塑胶微粒原料已渗透到人类衣食住行的方方面面, 并广泛应用于能源、 工业、 农业、 交通乃至航空航天和海洋开发等各重要领域不可或缺的材料。 在利益的诱惑下, 废旧塑胶的走私现象屡禁不止。 我国作为塑胶原料进口大国, 现有检测方法耗时长, 难以实现现场检测, 因此, 开发一种用于现场的废旧塑胶微粒判别方法, 对快速通关和海关缉私有重要意义。 拉曼光谱技术具有快速、 无损、 样品用量小、 无需前处理且适应性强等优点, 已在现场快速鉴别领域得到广泛应用。 在研究塑胶废旧机理的基础上, 将拉曼光谱技术结合化学判别方法, 应用于废旧塑胶原料识别。 选取两类成分相似的实际通关塑胶原料样品, 包含标准品及废旧品各160份, 并对样品的拉曼光谱信息进行了采集。 对比分析了两种塑胶原料的原始拉曼光谱, 并对样品的拉曼光谱特征峰进行了归属分析。 选取1 603 cm-1作为归一化参照峰位, 进一步探究废旧塑胶的成分变化, 对比统计了废旧塑胶原料及标准塑胶原料的相对峰强变化, 结果表明废旧塑胶原料发生了化学老化。 基于主成分分析法(PCA)对原始拉曼光谱及预处理拉曼光谱进行降维处理, 结果表面预处理拉曼光谱的前2主成分空间分离度较好, 通过对原始拉曼光谱数据进行背景扣除及平滑预处理, 可减少荧光背景及噪声对鉴别的影响, 提高鉴别的准确度。 将样品一半划分为校正集用于模型建立, 另一半划分为预测集用于模型验证, 基于偏最小二乘判别分析(PLS-DA), 建废旧塑胶原料鉴别模型, 该模型对建模训练集鉴别正确率为100%, 模型验证集鉴别正确率为99.06%。 研究表明, 基于拉曼光谱技术, 结合测试数据预处理及偏最小二乘判别分析方法, 可以有效地实现塑胶原料的现场、 快速、 准确鉴别, 为开发现场检测装备及方法提供理论参考。
拉曼光谱 ABS塑胶 主成分分析 偏最小二乘判别法 Raman spectroscopy ABS plastic PCA PLS-DA 
光谱学与光谱分析
2021, 41(1): 122
作者单位
摘要
1 钢铁研究总院, 北京 100081
2 钢研纳克检测技术股份有限公司, 北京 100094
3 北方工业大学电气与控制工程学院, 北京 100144
土壤中的重金属污染会影响农产品品质, 进而对人体的健康产生危害。 土壤中多种重金属元素通常使用化学法进行检测, 需要在实验室使用强氧化性物质对土壤样品进行消解处理, 然后对消解液进行测试。 而X射线荧光光谱法可以实现土壤中多种重金属元素的快速检测, 相对化学法检测, X射线荧光光谱法检出限较高。 对于汞元素来说, 其在土壤中的限值相对其他元素较低, 直接使用X射线荧光光谱法对于低含量的样品难以实现快速检测。 通过设计一个富集装置对土壤中汞进行富集, 并使用X射线荧光光谱仪进行测试, 实现土壤中汞的快速检测, 可以满足实际测试需求。 该装置首先对已准确称量的土壤样品进行加热, 其中的汞元素会发生解吸, 并使用滤膜对解吸出来的汞进行吸附, 从而实现汞元素的富集。 汞发生器会产生特定含量的含汞空气, 使用不同的滤膜进行吸附, 研究发现碳纤维滤膜具有很好的吸附作用, 可以对空气中的汞进行有效富集。 称取相同质量的土壤样品, 在解吸温度为800 ℃的条件下, 使用不同的抽气速率, 并叠加两层膜进行吸附测试。 研究发现随着通过滤膜气流速率的增加, 第一层滤膜的谱峰强度随之降低, 第二层滤膜的谱峰强度随之增加, 结果表明较低的气流流速更有利于滤膜的吸附, 并且使用1 L·min-1的气流流速时, 解吸出来的汞基本全部富集到第一层滤膜上。 通过滴加不同量的含汞溶液到高纯二氧化硅中, 并通过此体系进行富集和测试, 绘制汞的工作曲线, 线性相关系数为0.998 5。 通过对高纯二氧化硅进行多次测量, 可计算检出限和定量限分别为7.52和25.06 ng, 如果此时称样量为0.3 g, 计算可得土壤样品的定量限为0.083 mg·kg-1。 对国家标准土壤样品进行测试, 除低于定量限的一个样品之外, 其余样品的相对偏差不大于11.1%, 表明该方法可以实现农业用地土壤中重金属汞的快速检测。
 检测 能量色散X射线荧光光谱法 土壤 Mercury Detection Energy dispersive X-Ray fluorescence Soil 
光谱学与光谱分析
2021, 41(3): 734
作者单位
摘要
1 钢铁研究总院, 北京 100081
2 钢研纳克检测技术股份有限公司, 北京 100094
3 北方工业大学电气与控制工程学院, 北京 100144
稀土元素具有独特的电子结构, 化学性质活泼, 是冶金工业中重要的添加剂, 在许多领域发挥了重要的作用。 稀土添加剂不仅可以作为脱氧剂和脱硫剂对钢液进行净化, 还会对钢材产生变质作用和合金化作用, 改善钢组织, 提升钢种的性能。 但是钢铁材料中稀土元素的含量添加只有在一定范围内, 才会表现出较好的性能。 而通常使用电感耦合等离子体质谱法和电感耦合等离子体发射光谱法对钢铁材料中稀土元素进行检测, 这两种方法均需要对样品进行消解处理, 操作繁琐, 测试周期长。 使用便携式能量色散X射线荧光光谱法可以实现钢铁材料中稀土元素镧和铈的快速检测, 且整个仪器重量小于10 kg, 便于现场应用。 在传统便携式仪器的基础上, 使用大功率的光管对稀土元素的K系谱线进行激发, 与选择L系谱线进行分析对比, 不仅提高了谱线强度, 同时还避免了钢铁材料中其他常见组分对待测元素谱峰的重叠干扰。 测试时间设置为120 s, 通过研究不同的管电流和管电压研究峰强度和峰背比的变化情况, 最终选择800 μA和65 kV对样品进行激发。 使用参考物质绘制工作曲线, 同时使用背景强度对基体效应进行校正后, 镧和铈的线性相关系数分别可达到0.999 2和0.998 8; 对含量较低的参考样品GBW01135进行测试, 计算方法的检出限和定量限, 镧和铈的检出限分别为0.001 1%和0.000 5%, 定量限分别为0.003 8%和0.001 6%, 满足实际样品的测试需求。 使用样品GBW01132a进行11次连续测定, 对测试结果的稳定性进行研究, 镧和铈的相对标准偏差分别为2.42%和2.00%; 同时对测试结果的准确性进行研究, 对多个样品进行测试并与参考值进行对比, 结果表明除了一个低于检出限的样品之外, 其余样品的相对误差均小于20%,其中70%的样品的相对误差小于10%。 能量色散X射线荧光光谱法可实现钢铁材料中稀土元素的快速检测, 样品只需要简单的打磨处理就可以直接进行测试, 对进一步研究钢铁材料的性能具有一定的意义。
  钢铁材料 能量色散X射线荧光 Lanthanum Cerium Steel material Energy dispersive X-ray fluorescence 
光谱学与光谱分析
2020, 40(9): 2974
作者单位
摘要
1 钢铁研究总院, 北京 100081
2 钢研纳克检测技术股份有限公司, 北京 100094
基于拉曼光谱检测技术结合化学判别方法, 建立新陈大米拉曼光谱判别模型; 建立适当的样品预处理方法, 确保样品制备的均一性, 使用拉曼光谱仪对新陈大米共计60组样品进行检测, 在785 nm波长激光激发下, 获取样品200~2 400 cm-1的拉曼光谱信息; 对原始拉曼光谱进行基线校正、 平滑、 滤波等处理。 利用主成分分析法(PCA)对拉曼光谱进行降维处理及粗分类鉴别; 基于偏最小二乘分析法(PLS), 建立新陈大米快速鉴别模型, 该模型对建模训练集鉴别正确率为100%, 模型验证集鉴别正确率为95%。 结果表明: 该模型判断新陈大米是可行的, 为大米新陈度的快速判别提供了一种新的方法。
拉曼 大米 主成分分析 偏最小二乘判别法 Rice Raman spectroscopy PCA PLS 
光谱学与光谱分析
2019, 39(5): 1468
作者单位
摘要
1 钢铁研究总院, 北京 100081
2 钢研纳克检测技术股份有限公司, 北京 100094
对于土壤中重金属元素的检测, 传统的化学分析方法测试周期长, 前处理复杂, 使用的强酸还会对环境造成二次污染, 能量色散X射线荧光光谱法具有无损、 快速、 前处理简单、 仪器轻便等优点, 特别适合现场快速检测, 但用该方法对镉元素进行检测时, 通常用到的K系特征线能量较大, 普通能谱的检出限较高。 基于能量色散X射线荧光光谱技术, 研究了土壤中痕量重金属镉的快速检测方法, 通过选择合适的仪器部件, 搭建仪器测试系统, 综合考虑待测元素的谱峰强度和相对强度, 对仪器结构和测试条件进行优化。 研究表明, 峰强度随着管电流的升高基本上是线性增加的, 而相对强度则没有明显的变化, 对于镉的测试, 在光管条件允许的情况下选择尽可能大的管电流进行测试, 之后, 综合考虑镉的峰强度和相对强度随滤光片厚度以及管电压的变化情况, 使用理论标准偏差确定测试最优条件为: 管电压为55 kV, 管电流为48 μA, 滤光片为1.25 mm钼片; 测试时间会影响测试结果的相对标准偏差, 在测试时间小于500 s时, 峰强度的相对标准偏差随着测试时间的增加是降低的, 在测试时间大于500 s时, 峰强度的相对标准偏不再有明显的变化趋势, 由于测试结果的相对标准偏差越小, 测试结果的短期精密度越好, 仪器的重现性就越好, 因此测试时间最终选择为500 s; 样品测试条件也会对测试结果产生影响: 随着测试薄膜厚度的增加, 镉的峰强度和相对强度均是降低的, 根据实验结果, 最终选择厚度为12.5 μm的聚酯膜进行测试; 镉的峰强度和相对强度随着样品质量的增加而增加, 在样品质量大于3 g时, 镉的峰强度随样品质量的增加变化比较缓慢, 相对强度则没有明显的变化, 选择样品的质量大于3 g进行测试; 随着含水量的增加, 镉的峰强度和相对强度均会略有降低, 因此水分会对测试结果产生影响, 对土壤样品的测试应该风干或烘干。 使用以上经过优化的测试条件, 用国家标准样品和电感耦合等离子体质谱法定值的样品绘制工作曲线, 线性相关系数可达0.993; 使用镉含量为1.12 mg·kg-1的国家标准样品GSD-10测试11次, 测试的结果的标准偏差为0.09, 相对标准偏差为8.22%; 用高纯二氧化硅测试方法检出限, 可达0.16 mg·kg-1, 小于国标一级土壤的限值; 测试实际样品, 并与电感耦合等离子体质谱法测试的结果进行对比, 测试结果的一致性较好。 通过对仪器结构和样品测试条件进行优化, 基于能量色散X射线荧光光谱法对土壤中痕量重金属镉的检出限有了很大的降低, 对污染地区土壤镉的快速筛查及大面积测定意义重大。
能量色散X射线荧光光谱法 土壤  检测 Energy dispersive X-ray fluorescence spectrometry Soil Cadmium Detection 
光谱学与光谱分析
2018, 38(8): 2600
作者单位
摘要
1 钢铁研究总院, 国家钢铁材料测试中心, 北京100081
2 河北大学电子信息工程学院, 河北 保定071002
3 北京航空航天大学软件学院, 北京100191
辉光放电原子发射光谱仪可用于物质表面化学成分随深度分布的分析, 在镀层分析、 金属材料检验等领域有着广泛的应用。 文章介绍了辉光深度分析的传统方法和局限性以及实时深度测量技术的近期研究, 提出了一种用于辉光放电光谱深度分析的激光实时测量新方法。 文章采用激光位移传感器和根据激光测量方法设计的辉光放电光源构成实时深度测量系统, 详细阐述了系统的设计方案和技术原理。 系统的设计结构能够实现在辉光光谱分析的同时进行激光实时溅射深度的测量。 通过实验验证和分析了激光实时测量样品溅射深度过程中产生的光源位移现象。 采用双激光器实时深度测量系统对锌合金标准样品进行了溅射深度的实时测量, 给出了实时深度测量曲线。 通过将溅射面测量曲线与参考面曲线进行叠加, 得到了样品溅射坑深度的实际值, 与Dektak8型表面形貌仪测量结果一致。
辉光放电原子发射光谱仪 深度轮廓分析 激光测量 实时深度测量 辉光放电 镀层 GD-OES Depth profile analysis Laser measurement Real-time depth determination Glow discharge Coating 
光谱学与光谱分析
2011, 31(9): 2536

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!