Author Affiliations
Abstract
1 State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
2 Intelligent Optics & Photonics Research Center, Jiaxing Research Institute, Zhejiang University, Jiaxing, Zhejiang 314000, P. R. China
Among all the structural formations, fiber-like structure is one of the most common modalities in organisms that undertake essential functions. Alterations in spatial organization of fibrous structures can reflect information of physiological and pathological activities, which is of significance in both researches and clinical applications. Hence, the quantification of subtle changes in fiber-like structures is potentially meaningful in studying structure-function relationships, disease progression, carcinoma staging and engineered tissue remodeling. In this study, we examined a wide range of methodologies that quantify organizational and morphological features of fibrous structures, including orientation, alignment, waviness and thickness. Each method was demonstrated with specific applications. Finally, perspectives of future quantification analysis techniques were explored.
Biophotonics orientation waviness thickness fiber-like structure 
Journal of Innovative Optical Health Sciences
2023, 16(4): 2230012
Author Affiliations
Abstract
1 Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow 119991, Russia
2 Bauman Moscow State Technical University, Moscow 105005, Russia
3 Institute for Regenerative Medicine, Sechenov University, Moscow 119991, Russia
4 Institute of Solid State Physics of the Russian Academy of Sciences, Chernogolovka 142432, Russia
5 Research Institute of Human Morphology, Moscow 117418, Russia
6 School of Precision Instrument and Optoelectronic Engineering, Tianjin University, Tianjin 300000, China
7 College of Materials Science and Engineering, Sichuan University, Chengdu 610000, China
8 Science Medical Center, Saratov State University, Saratov 410012, Russia
9 Institute of Precision Mechanics and Control, FRC "Saratov Scientific Centre of the Russian Academy of Sciences", Saratov 410028, Russia
Terahertz (THz) technology offers novel opportunities in biology and medicine, thanks to the unique features of THz-wave interactions with tissues and cells. Among them, we particularly notice strong sensitivity of THz waves to the tissue water, as a medium for biochemical reactions and a main endogenous marker for THz spectroscopy and imaging. Tissues of the brain have an exceptionally high content of water. This factor, along with the features of the structural organization and biochemistry of neuronal and glial tissues, makes the brain an exciting subject to study in the THz range. In this paper, progress and prospects of THz technology in neurodiagnostics are overviewed, including diagnosis of neurodegenerative disease, myelin deficit, tumors of the central nervous system (with an emphasis on brain gliomas), and traumatic brain injuries. Fundamental and applied challenges in study of the THz-wave – brain tissue interactions and development of the THz biomedical tools and systems for neurodiagnostics are discussed.
THz technology THz spectroscopy and imaging superresolution imaging biophotonics brain neurodiagnosis tumor glioma neurodegenerative diseases brain injury light scattering 
Opto-Electronic Advances
2023, 6(5): 220071
作者单位
摘要
上海交通大学区域光纤通信网与新型光通信系统国家重点实验室,上海 200240

生物组织的吸收系数和散射系数与组织的生理状态相关,是检测人体健康状态的重要指标。当前双层生物组织模型的光学参数反演方案中,吸收系数和散射系数的预测精度受到上层组织厚度等参数的影响较大,限制了模型的实际应用范围。为此,提出一种对上层组织厚度等参数不敏感的吸收和散射系数反演方法。通过采集漫反射光信号的空间和时间分布信息,并利用卷积神经网络来反演双层生物组织的吸收系数和散射系数,在随机的上层组织厚度和折射率等参量下实现较高的吸收系数和散射系数反演精度。在仿真实验中,基于改进的蒙特卡罗模拟获得双层皮肤模型在不同空间探测位置处、不同时刻的漫反射光强信息,然后利用卷积神经网络实现对两层皮肤组织吸收系数和散射系数的预测。结果表明:在固定的上层组织厚度和折射率参数下,吸收系数和散射系数反演的平均相对误差均小于4%;而当上层组织厚度和折射率存在随机变化时,吸收系数和散射系数的平均相对误差仍小于8%。相较其他方法,所提的测量方案和反演算法进一步提升了反演精度和扩展了实际应用场景,为生物组织光学参数的无创测量提供了新思路。

生物光子学 组织光学参数 漫反射率 蒙特卡罗模拟 卷积神经网络 
激光与光电子学进展
2022, 59(6): 0617018
刘智 1,2罗泽伟 1,2王正印 1,2涂壮 1,2[ ... ]陈同生 1,2,*
作者单位
摘要
1 华南师范大学生物光子学研究院, 教育部激光生命科学重点实验室, 广东 广州 510631
2 华南师范大学生物光子学研究院, 广东省激光生命科学重点实验室, 广东 广州 510631
由于具有低光毒性、高速宽视场以及多通道三维超分辨成像能力,超分辨结构照明显微术(SR-SIM)特别适合用于活细胞中动态精细结构的实时检测研究。超分辨结构照明显微图像重建算法(SIM-RA)对SR-SIM的成像质量具有决定性影响。本文首先简要介绍了超分辨显微术的发展现状,阐述了研究SR-SIM图像重建算法的必要性;然后介绍了SR-SIM的成像原理,并重点介绍了SR-SIM图像重建算法,包括SR-SIM中频繁使用的去卷积重建算法、SR-SIM校准与重建过程中参数值获取的算法,以及目前发展的超分辨结构照明显微图像重建算法,并介绍了SR-SIM工具箱;最后总结了当前发展超分辨结构照明显微图像重建算法需解决的5个问题。
生物光子学 光学成像 超分辨显微术 结构照明显微术 图像重建算法 荧光 多帧重建 
中国激光
2021, 48(3): 0307001
作者单位
摘要
浙江大学光电科学与工程学院,现代光学仪器国家重点实验室, 浙江 杭州 310027
小型化探头是内窥光学相干层析成像(Optical coherence tomography, OCT)中的普遍需求。介绍了包括基于球透镜、光纤透镜、自聚焦光纤、自由曲面透镜、无透镜的OCT技术的发展历程,总结和比较了各种技术的优劣,为探头的小型化设计提出了建议。研究探头的焦深拓展技术对分辨人体内细胞的在体成像的发展具有重要意义。介绍了几种重要的适用于小型化探头的焦深拓展技术,其中基于模式干涉的探头由于易于制作、结构紧凑、传输效率高,同时具有可以优化工作距离、焦深和轴向光强均匀性的优点,在拓展小型化探头的焦深方面具有一定的发展潜力。
生物光子学 光学相干层析成像 内窥成像 光纤探头 模式干涉 焦深拓展 
中国激光
2020, 47(2): 0207013
作者单位
摘要
1 Laser-Forschungslabor, LIFE-Center, Hospital of University, Ludwig-Maximilians University Munich, Munich, Germany
2 Department of Urology, Hospital of University, Ludwig-Maximilians University Munich, Munich, Germany
3 Department of Vascular Surgery, Diakonie Klinikum, Schw?bisch Hall, Germany
4 Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Greifswald- Insel Riems, Germany
5 Labor für Tumorimmunologie, LIFE-Center, Hospital of University, Ludwig-Maximilians University Munich, Munich, Germany
translational biophotonics, thermal laser applicat 
Frontiers of Optoelectronics
2017, 10(3): 239
Author Affiliations
Abstract
1 Department of Electronic Engineering The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
2 Department of Biochemistry The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
Biophotonics is an exciting and fast-expanding frontier which involves the fusion of advanced photonics and biology. It has not only created many novel methodologies for biomedical research, but also achieved many significant results as an independent field. Thanks to femtosecond (fs) laser technologies, important progresses have been made regarding the manipulation, imaging, and engineering of biological samples ranging from single molecules to tissues in the last 20 years. The ultrashort pulses at near-infrared band provide many advantages: high nonlinear efficiency, low absorption by biological samples, high spatial and temporal resolution and confinement, and low phototoxicity. They are noninvasive and easy to control. Although the mechanism of how fs laser pulses interact with cells remains unclear, experimental results have shown that they could open up the cell membrane and hence made optical transfection and optical cell fusion possible. In this review, some of the seminal works on transfection and cell fusion by fs lasers are presented. The ideas behind and the experimental details will be described together with a highlight on their significances. Specifically, the thermal effect is analyzed based on multiphoton excitation and plasma formation in an aqueous environment to explain the nontoxic characteristic of fs laser irradiation. Last, some applications of fs laser induced transfection and cell-cell fusion with potential major impact in biomedical sciences are proposed.
Biophotonics transfection cell fusion femtosecond laser 
Journal of Innovative Optical Health Sciences
2011, 4(2): 113
作者单位
摘要
香港大学电子工程系, 香港 沙田
近年来,高速发展的激光技术已经广泛应用于医疗领域,比如眼科手术和光学相干层析成像。尤为特殊的是,飞秒激光更可专用于对活体细胞的基础研究。飞秒激光具有别种激光无法获得的特殊性质。它对于细胞的伤害很小,因为它的线性吸收和热效应远远低于连续光。此外,由于飞秒光的超高峰值功率,它可以对细胞形成多光子电离而在细胞膜上开孔,因此可以转基因和融合细胞,同时不会太过于伤害细胞。在这个报告里,将阐述我们的以下研究:飞秒光致转基因、细胞融合以及细胞在凋亡中的动态过程。在单细胞水平上提出了一些凋亡过程的可能机制,如活性氧化合物、核管和细胞内自由钙离子的产生。
文字间用 号隔开空半格生物光子学 飞秒激光 细胞转基因 细胞融合 biophotonics femtosecond laser cell transfection cell fusion 
光学与光电技术
2011, 9(1): 1
李恒 1,2,*邵永红 2王岩 2屈军乐 2[ ... ]牛憨笨 2
作者单位
摘要
1 西安工业大学 光电工程学院,陕西 西安 710032
2 深圳大学 光电子学研究所光电子器件与系统(教育部/广东省)重点实验室,广东 深圳 518060
提出一种具有快速层析成像以及光谱分辨功能的多光子激发荧光显微技术。采用微透镜阵列产生激发光点阵,利用线扫描方式扫描阵列点,对样品进行多线并行多光子激发,利用棱镜色散荧光信号,同时,利用面阵CCD并行记录光谱分辨的多线荧光信号。采用4×4的微透镜阵列,仅需要记录128幅图像,即可重构512 pixel×512 pixel的光谱分辨荧光显微图像。对多色荧光珠、染色铃兰根茎以及花粉颗粒等样品进行实验,得到样品的双光子激发荧光光谱分辨图像,光谱测量范围为450-700 nm,光谱分辨率为3 nm。
生物光子学 多光子激发 荧光光谱 荧光显微 多焦点多光子显微 
中国激光
2010, 37(5): 1240
作者单位
摘要
1 华南师范大学 激光运动医学实验室,广东 广州 510006
2 广州医学院 第一附属医院激光室,广东 广州 510120
感染源于免疫功能低下。在流行性感冒所发生的局部免疫上,鼻腔内的细胞和组织发挥着重要作用。寒冷导致的鼻腔内血管明显的收缩使得普通感冒症状出现的可能性增大,鼻腔免疫功能的化学或生物增强可以增强对流感的抵抗能力。低强度激光鼻腔内照射可以康复鼻腔内的免疫功能。将相关现象和鼻腔内低强度激光照射疗法(ILILT)机理进行整合,用于支持ILILT对新型甲型H1N1病毒流感的预防和康复。
生物医学光学 甲型H1N1流感病毒 光生物调节作用  流感 
激光与光电子学进展
2009, 46(11): 73

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!