刘红忠 1,2,*史永胜 1,2尹磊 1,2陈邦道 1,2[ ... ]ChenJinju 3
作者单位
摘要
1 机械制造系统工程国家重点实验室,陕西 西安 710049
2 西安交通大学机械工程学院,陕西 西安 710049
3 纽卡斯尔大学工程学院,英国 纽卡斯尔 NE1 7RU
针对超精密运动台的二维亚微米级精度同步测量需求,提出并建立了平面反射式二维光栅测量系统,研究了平面反射式二维光栅的平面位移同步测量方法,分析了平面反射式二维光栅测量系统的误差传递模型。通过Vold-Kalman滤波算法,对光栅信号中存在的高次谐波误差、幅值/相位误差进行实时修正和滤除。采用反正切细分算法和周期测量法对光栅正交脉冲的频率进行测量,实现对被测目标的高分辨率测量和实时运动速度测量。同时,构建了亚微米级测量精度的平面反射式二维光栅测量系统,测量范围为500 mm×500 mm,xy方向的定位精度为±0.3 μm,测量分辨率为0.005 μm。
测量 平面反射式二维光栅 反正切细分算法 亚微米级测量 
激光与光电子学进展
2023, 60(3): 0312018
作者单位
摘要
华侨大学机电及自动化学院, 福建 厦门 361021
鉴于彩色共聚焦测量技术无需做轴向扫描即可获得高度信息,且轴向分辨率能达到亚微米级、甚至纳米级,基于彩色相机的彩色共聚焦测量方法,提出一种颜色转换算法,并通过仿真对该算法进行优化,建立轴向高度与颜色的对应关系。经过实验分析,该颜色转换算法能够在轴向高度与颜色之间建立良好的线性关系,线性判断系数R2达到了0.9979;同时,对100 μm高度的台阶进行测量,测量精度达到了亚微米级;最后,对硬币表面进行测量和分析,修正了一系列误差后,较好地还原了硬币表面的三维形貌轮廓。
测量 彩色共聚焦 彩色相机 颜色转换算法 亚微米级 三维重构 
光学学报
2019, 39(12): 1212001
作者单位
摘要
厦门大学化学化工学院, 谱学分析与仪器教育部重点实验室, 福建 厦门 361005
基于激光离子源的飞行时间质谱法作为一门新兴的成像方法, 已经被广泛应用于材料、 地质、 环境、 药物和生命科学领域中。 但受限于光学衍射极限、 聚焦透镜的焦距和数值孔径等因素, 使其难以实现亚微米尺寸的高空间分辨率成像。 近场技术的引入成功地解决了光学衍射极限的限制, 将近场技术与激光电离技术相结合, 可以实现对固体样品表面纳米级弹坑的剥蚀。 此外, 传统的质谱成像技术常常假设样品表面是平整的, 忽略其表面形貌的高低起伏, 但这往往会导致信号强度不稳定和成像假象。 为此, 不仅需要获得样品中的化学组成与空间分布, 还需同时获得样品表面的形貌信息, 才能实现多功能的原位表征。 在自行研制的激光解吸/电离飞行时间质谱的基础上, 采用近场纳米有孔针尖离子源代替传统的远场激光聚焦, 以532 nm波长激光为第一束解析激光, 355 nm波长激光为后电离激光, 音叉式原子力显微镜控制系统针尖与样品之间的距离维持在近场范围内, 对酞菁铜镀层样品表面进行了弹坑剥蚀实验, 获得了直径为550~850 nm的弹坑点阵; 并对7.5 μm×7.5 μm的标准酞菁铜网格样品进行了铜离子亚微米级的高分辨率成像; 此外, 纳米有孔针尖离子源作为原子力显微镜的一种变体, 还可同时获得成像区域的表面形貌信息, 这一结合优势大大拓展了质谱技术在微纳尺度下的原位表征能力。
有孔针尖 亚微米级空间分辨 质谱成像 形貌成像 飞行时间质谱 Nanometer aperture tip Sub-micrometer-scale resolution Mass spectrometry imaging Topographical imaging Time-of flight mass spectrometry 
光谱学与光谱分析
2019, 39(5): 1354
作者单位
摘要
广州大学 化学化工学院, 广东 广州 510006
用溶胶燃烧法在1 200 ℃制备了亚微米级Ca2.40Lu0.54ScMgSi3O12∶0.06Ce3+荧光粉, 并对其进行了物相结构、形貌、光致发光性质和热猝灭性质的表征。与传统高温固相法制备的样品相比, 溶胶燃烧法不但降低了制备温度, 而且制备的Ca2.40Lu0.54ScMgSi3O12∶0.06Ce3+荧光粉的形貌也有所改善。发光性质测试结果表明, 亚微米级Ca2.40Lu0.54ScMgSi3O12∶0.06Ce3+荧光粉的发光峰值相比于高温固相法样品有约10 nm的红移, 而且样品的热猝灭性质也优于高温固相法样品。
荧光粉 亚微米级 热猝灭 LED LED phosphor submicron sized thermal-quenching 
发光学报
2014, 35(1): 73
作者单位
摘要
1 中国科学院 长春光学精密机械与物理研究所,吉林 长春 130033
2 中国科学院 研究生院,北京 100039
利用临界角法检焦具有分辨力高、损失光能小、结构简单、系统调试容易的特点设计了亚微米级检焦系统。介绍了临界角法离焦检测的基本原理,通过合理假设,利用菲涅尔公式和高斯光学公式得到了离焦误差信号的计算公式。实验采用单光路临界角法,利用He-Ne激光器、临界角棱镜、四象限光电探测器、信号采样电路、数据采集卡等元器件组成离焦检测系统,实现离焦信号的提取;通过数字滤波、归一化处理等技术得到离焦误差信号(FES),以此获得FES的大小和变化趋势与离焦量的关系曲线。实验表明,临界角法探焦系统静态分辨力<15 nm、线性范围可达±4 μm,满足亚微米级检焦系统的设计要求。
临界角法 离焦检焦 亚微米级 critical-angle method focus error detecting sub-micrometer grade 
光学 精密工程
2009, 17(3): 537

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!