付秀华 1,2魏雨君 1,2,*林兆文 2,3潘永刚 2,3[ ... ]付广元 1,2
作者单位
摘要
1 长春理工大学 光电工程学院,吉林长春30022
2 长春理工大学 中山研究院,广东中山58436
3 中山吉联光电科技有限公司,广东中山52846
4 云南北方光学科技有限公司,云南昆明650216
为提升光学镜头的成像质量,消除杂散光的影响,以K9玻璃为基底设计可见光波段平均反射率小于0.1%的减反射膜。采用电子束离子辅助沉积的制备方式,针对薄层敏感度高、光谱变化大等问题,通过建立稳定控制膜层厚度的数学模型来减小膜厚误差,提高制备精度和成膜稳定性。对减反射膜进行环测实验,优化调整工艺参数,侧重提高减反射膜的硬度和耐水煮能力。实验结果表明,最终制备出的减反射膜在420~680 nm波段内的平均反射率约为0.044%,最高反射率为0.071 2%,克服了以MgF2为外层的减反射膜机械性能和化学稳定性较差的问题,满足工程应用低损耗、稳定可靠、高强度、可重复性制备的要求。
光学薄膜 电子束蒸发镀膜 误差控制 机械性能 可见光 反射率 thin film electron beam evaporation coating error control mechanical properties visible light reflectance 
光学 精密工程
2024, 32(1): 1
杨平军 1,2李铁虎 1,2,*李昊 1,2,*党阿磊 1,2
作者单位
摘要
1 1.西北工业大学 材料学院, 西安 710072
2 2.陕西省石墨烯新型炭材料及应用工程实验室, 西安 710072
环氧树脂基泡沫炭是一种具有三维海绵状结构的新型炭材料, 独特的网状泡孔结构使其具有高孔隙率、耐高温、耐腐蚀、导电/导热可调等性能, 应用前景广阔。但是环氧树脂的石墨化困难, 本工作以石墨烯为异质成核改性剂, 用以提高环氧树脂泡沫炭的石墨化程度、电导率和力学性能。采用简单的发泡、炭化和石墨化工艺制备了石墨烯改性环氧树脂泡沫炭。石墨烯异质成核剂诱导了泡沫炭碳微晶生长, 增加了碳晶格条纹长度, 减少了碳晶体混乱。研究表明, 不含或含质量分数0.05%石墨烯改性泡沫炭的晶面间距、晶粒堆垛高度、石墨化度分别为0.343 nm、3.35 nm、8.42%和0.342 nm、10.22 nm、23.2%。此外, 石墨烯作为晶胞成核位点会影响泡沫炭的平均晶胞尺寸, 随着石墨烯含量的增加, 泡沫炭平均晶胞尺寸先减小后增大。同时, 石墨烯改性增大了泡沫炭的有序结构, 提高了其导电性, 当石墨烯的质量分数为0.05%时, 泡沫炭电导率为53.8 S·m-1。相对于纯泡沫炭(压缩应变为0.0096%), 质量分数0.01%、0.02%、0.05%和0.10%的石墨烯改性泡沫炭压缩应变增加至0.208%、0.228%、0.187%和0.1146%。本研究为碳纳米材料/泡沫炭制备、碳结构和性能调控提供了新的研究方法。
泡沫炭 石墨烯 异质成核 石墨化 机械性能 carbon foam graphene heterogeneous nucleation graphitization mechanical property 
无机材料学报
2023, 39(1): 107
孙小凡 1,2陈小武 1,2靳喜海 1,2,*阚艳梅 1,2[ ... ]董绍明 1,2,*
作者单位
摘要
1 1.中国科学院上海硅酸盐研究所 高性能陶瓷和超微结构国家重点实验室, 上海 200050
2 2.中国科学院大学 材料与光电研究中心, 北京 100049
AlN-SiC复相陶瓷力学性能好、导热性与抗高温氧化性能优异, 作为纤维增强陶瓷基复合材料的基体材料具有良好的应用前景。本研究以Si-Al合金为熔渗介质, 多孔C-Si3N4为熔渗预制体, 对低温反应熔渗制备AlN-SiC复相陶瓷及其性能展开研究。研究发现Si-Al合金形态对反应熔渗过程存在着重要的影响: 以Si-Al合金粉末作为熔渗介质时, 反应熔渗过程中在Si-Al/C-Si3N4界面处将原位形成一层致密的Al-O阻挡层, 从而严重阻碍Si-Al熔体向C-Si3N4预制体内部的渗透, 使反应熔渗过程难以进行;以Si-Al合金锭作为熔渗介质时, Si-Al熔体可以深入渗透到多孔C-Si3N4预制体内部, 并通过进一步反应, 原位形成致密的AlN-SiC复相陶瓷。材料性能测试表明, 所得材料的力学和热学性能与其内部残余硅含量关系密切。随着残余硅含量降低, 材料强度明显提升, 而热导率有所下降。含质量分数4%残余硅的AlN-SiC复相陶瓷, 抗弯强度达到320.1 MPa, 热导率达26.3 W·m-1·K-1, 材料的强度几乎与传统反应烧结SiC陶瓷相当, 并深入探讨了出现上述现象的本质原因。本研究对低温熔渗工艺制备SiCf/AlN-SiC复合材料具有重要的指导意义。
反应熔渗(RMI) AlN-SiC 机械性能 热导率 reactive melt infiltration (RMI) AlN-SiC mechanical property thermal conductivity 
无机材料学报
2023, 38(10): 1223
作者单位
摘要
华中光电技术研究所—武汉光电国家研究中心, 湖北武汉 430223
光电设备设计要求结构紧凑、体积小、质量轻、工作精度高、响应速度快、可靠性高。传统的电机选型会留有较多余量, 导致伺服驱动电机的尺寸过大, 进而导致整个系统的尺寸和质量增大。因此在对电机的选型时应充分考虑其搭载的平台。分析了在海洋环境下某光电设备伺服控制电机克服外界环境时需要考虑各项因素, 如在复杂海况环境下载体摇摆, 参考电机机械性能指标, 选取合适电机, 并通过摇摆试验和实际使用验证了该电机选择的合理性。
电机选型 伺服驱动 电机机械性能指标 海况 摇摆 motorselection servodrivemotor motormechanicalperformance seaconditions swing 
光学与光电技术
2023, 21(3): 120
作者单位
摘要
武汉理工大学 材料复合新技术国家重点实验室, 武汉 430070
MgAl2O4透明陶瓷具有优异的光学性能, 但其较差的机械性能和成型过程中的水解问题限制了实际应用, 通过组成设计MgAlON四元尖晶石可以有效调节其综合性能。本研究采用凝胶注模成型、无压烧结和热等静压处理制备了一种具有宽光谱透过范围的新型Mg0.9Al2.08O3.97N0.03透明陶瓷, 系统比较其与MgAl2O4透明陶瓷的光学性能和机械性能, 分析了低应力下裂纹的缓慢扩展并预测使用寿命。研究表明:固相体积分数为50%的陶瓷浆料粘度最低, 为124 mPa·s, 满足凝胶注模成型的需求; 2 mm厚的Mg0.9Al2.08O3.97N0.03透明陶瓷样品在3.7 μm处的直线透过率达86.2%, 光学透过范围与MgAl2O4相比拟, 折射率和阿贝数略高于MgAl2O4; 同时, 该陶瓷具有和MgAl2O4相近的Weibull模数, 尽管裂纹缓慢扩展系数比MgAl2O4小, 但特征强度(210.6 MPa)和惰性强度(227.5 MPa)均高于MgAl2O4。包含少量N的MgAlON尖晶石较好地克服了陶瓷粉体的水解问题, 并在保持优越光学性能的前提下显著提高了透明陶瓷的机械性能。本研究为尖晶石型透明陶瓷的制备与性能的改善提供了新的途径。
透明陶瓷 凝胶注模成型 机械性能 光学性能 transparent ceramics aqueous gel-casting mechanical property optical property 
无机材料学报
2022, 37(9): 969
作者单位
摘要
研究针对不同服役环境下2D SiC/SiC复合材料的电阻率特性进行了研究。从1300 ℃降至室温的无氧环境中, 复合材料的电阻率随温度降低而增大; 借助曲线拟合, 建立了电阻率与温度之间的映射关系。在1300 ℃空气环境中氧化20和60 h后, 由于PyC界面层和SiC基体的氧化, 复合材料的导电性显著降低; 以SiO2的含量定量表征氧化程度, 建立了电阻率与氧化损伤之间的映射关系。复合材料的电阻率和应力随应变的变化趋势相似, 电阻率变化率和刚度随应变的变化趋势相反。在线性阶段, 基体开裂数量极少, 刚度几乎不变, 电阻率缓慢增大; 在非线性阶段, 基体开裂数量增加较快, 造成刚度降低, 电阻率快速增大; 后半段的基体裂纹数量缓慢增多, 刚度和电阻率变化率趋于平稳。
陶瓷基复合材料 电学特性 高温特性 机械性能 损伤力学 ceramic-matrix composites electrical property high-temperature property mechanical property damage mechanics 
无机材料学报
2022, 37(4): 420
作者单位
摘要
1 常熟佳合显示科技有限公司,常熟 215500
2 武汉理工大学硅酸盐建筑材料国家重点实验室,武汉 430070
设计玻璃组成及晶化工艺提高Li2OAl2O3SiO2微晶玻璃的强度是当前亟需解决的问题。本文通过熔融浇铸法制备了具有特定组成的Li2OAl2O3SiO2玻璃,通过两步热处理方法制备了高强度半透光微晶玻璃。差示扫描热分析结果显示玻璃的转变温度为532 ℃,且有多个析晶峰。热处理后,X射线衍射证明了玻璃中析出以Li2Si2O5、LiAlSi3O8、LiAlSi4O10为主晶相的晶体,且随着热处理温度的上升或时间延长,透锂长石逐渐转变为锂辉石晶相,晶粒尺寸也从70 nm(热处理条件为:750 ℃,0.5 h和780 ℃,10 h)生长至340 nm(热处理条件为:820 ℃,0.5 h和850 ℃,4 h),微晶玻璃从半透光转变为完全乳浊。微晶玻璃具有优异的机械性能,维氏硬度最大可达9.15 GPa,环上环的最大负载可达1 335 N,最大整机跌落高度可达162 cm。此微晶玻璃可用于手机等电子器件的背板保护玻璃。
微晶玻璃 维氏硬度 热分析 机械性能 热处理 熔融浇铸法 glass ceramics Vickers hardness thermal analysis mechanical property heat treatment meltquenching mehtod 
硅酸盐通报
2022, 41(11): 3813
作者单位
摘要
1 中北大学材料科学与工程学院, 太原 030051
2 清华大学材料学院, 新型陶瓷与精细工艺国家重点实验室, 北京 100084
研究了烧结温度对海藻酸钠离子凝胶法制备3-1型多孔PZT压电陶瓷和凝胶注模法制备3-3型多孔PZT压电陶瓷性能的影响。结果表明: 当烧结温度从1 150 ℃升至1 250 ℃, 多孔PZT陶瓷的孔隙率降低, 晶粒尺寸、介电常数、压电系数、厚度机电耦合系数和抗压强度增大, 静水压压电系数与静水压品质因数随之降低。3-1型PZT陶瓷具有定向直通孔结构, 且在成型过程中引入Ca2+。因此, 在相同的烧结温度下, 3-1型PZT陶瓷的介电常数和抗压强度高于3-3型PZT陶瓷, 可靠性和稳定性更强, 压电系数和静水压品质因数则低于3-3型PZT陶瓷, 灵敏度下降。3-1型PZT陶瓷的静水压品质因数最高可达到4 755×10-15 Pa-1, 适用于高灵敏度压电水听器。
多孔压电陶瓷 烧结温度 显微形貌 电学性能 机械性能 porous piezoelectric ceramics sintering temperature microscopic morphology dielectric property mechanical property 
硅酸盐学报
2022, 50(3): 691
赵紫薇 1,2,*高小武 1,2曹文鑫 2刘康 2[ ... ]朱嘉琦 2
作者单位
摘要
1 哈尔滨工业大学深圳校区理学院,深圳 518055
2 哈尔滨工业大学航天学院,哈尔滨 150001
纳米金刚石具有优异的机械性能、导热性、生物相容性和结构可调性,在复合材料、电化学、催化、医学等领域的研究被不断开拓,工业上通过爆轰法实现纳米金刚石的大批量生产为其应用提供了基础。由于纳米金刚石表面结构复杂,需要精准调控以实现目标性能,对其表面功能化的研究具有重要的实际意义。本文首先介绍了对纳米金刚石进行各种表面修饰的方法,然后着重阐述其表面功能化研究对纳米金刚石在机械性能、催化性能和生物医学领域应用的影响,最后对纳米金刚石未来的研究方向进行了展望。
纳米金刚石 表面功能化 机械性能 催化性能 生物医学 性能调控 nanodiamond surface functionalization mechanical property catalytic performance biomedical science performance modulation 
人工晶体学报
2022, 51(5): 852
作者单位
摘要
武汉理工大学 材料复合新技术国家重点实验室, 武汉 430070

尖晶石型陶瓷具有优异的热机械性能, 在高温结构材料领域具有良好的应用前景。本研究将键价模型与高温机械性能理论表征模型相结合, 建立了从变温晶体结构出发预测尖晶石型陶瓷高温热机械性能的方法, 阐明了晶体结构与高温热机械性能之间的关系。采用该方法预测了MgAl2O4透明陶瓷的高温断裂强度和断裂韧性, 其预测结果与实验值吻合。研究表明, MgAl2O4中阳离子反位率、化学键硬度和体模量随温度的变化在800 ℃上下存在显著差异, 然而由于配位多面体的耦合作用, 阳离子反位的温度效应不会显著影响MgAl2O4透明陶瓷的高温热机械性能。

尖晶石型陶瓷 MgAl2O4 透明陶瓷 键价模型 机械性能 理论表征模型 spinel-type ceramics magnesium aluminate transparent ceramic bond valence models thermomechanical property theoretical characterization model 
无机材料学报
2021, 36(10): 1067

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!