郭子路 1,2,3王文娟 1,4,**曲会丹 1范柳燕 1[ ... ]陆卫 1,2,3,4,***
作者单位
摘要
1 中国科学院上海技术物理研究所 红外物理国家重点实验室,上海 200083
2 中国科学院大学,北京 100049
3 上海科技大学 物质科学与技术学院,上海 201210
4 上海量子科学研究中心,上海 201315
5 复旦大学 应用表面物理国家重点实验室和物理学系,上海 200438
InP基InGaAs/InP雪崩光电二极管(APD)对近红外光具有高敏感度,使其成为微弱信号和单光子探测的理想光电器件。然而随着先进器件结构越来越复杂,厚度尺寸从量子点到几微米不等,性能越来越受材料中晶格缺陷的影响和工艺条件的制约。采用固态源分子束外延(MBE)技术分别在As和P气氛保护下对InP衬底进行脱氧处理并外延生长晶格匹配的In0.53Ga0.47As薄膜和APD结构材料。实验结果表明,As脱氧在MBE材料质量方面比P脱氧具有明显的优势,可获得陡直明锐的异质结界面,降低载流子浓度,提高霍尔迁移率,延长少子寿命,并抑制器件中点缺陷或杂质缺陷引起的暗电流。因此,As脱氧可以有效提高MBE材料的质量,这项工作优化了InP衬底InGaAs/InP外延生长参数和器件制造条件。
分子束外延 P/As切换 异质界面扩散 铟镓/磷化铟雪崩光电二极管 molecular beam epitaxy P/As exchange heterointerface diffusion InGaAs/InP APD 
红外与毫米波学报
2024, 43(1): 63
汪鸿祎 1,2,3陶文刚 1,2,4陆逸凡 1,2,3张永刚 1,2[ ... ]方家熊 1,2
作者单位
摘要
1 中国科学院上海技术物理研究所 传感技术联合国家重点实验室,上海 200083
2 中国科学院上海技术物理研究所 中国科学院红外成像材料与器件重点实验室,上海 200083
3 中国科学院大学,北京 100049
4 上海科技大学,上海 201210
红外焦平面探测器正朝着更大规模、高帧频、高集成度的方向发展。在高速目标跟踪探测、感兴趣区域成像等应用场景,需要解决高速读出时面临的功耗较高的难点。文中提出了一种数字IC的可编程开窗IP核设计,并通过采用列级分时选通技术,实现对640×512读出电路列模块的超低功耗优化。像素单元电路包含CTIA输入级、双采样保持结构和跟随输出,折衷优化了面积、噪声和增益等因素。相较于传统用门级电路定制设计实现的开窗方式,可编程开窗数字IP核对于不同面阵规格具有良好的可扩展性,并且可以借助后端软件综合优化版图布局,从而缩短设计周期。实际研制中采用0.18 µm 标准CMOS工艺完成了中心距15 µm的640×512读出电路设计及流片验证,并与640×512元短波红外InGaAs探测器芯片进行了耦合测试,结果表明分时选通技术有效降低了列级电路功耗,电路读出总功耗小于80 mW,列级功耗仅为15 mW,读出速率达到15 MHz,可编程开窗IP核功能正常,可以实现指定区域的开窗功能。
可编程随机开窗 分时选通技术 读出电路 铟镓 短波红外 programmable arbitrary windowing time-selection technology ROIC InGaAs short-wave infrared 
红外与激光工程
2023, 52(12): 20230241
郭威 1常浩 2徐灿 3周伟静 2[ ... ]姬刚 2
作者单位
摘要
1 航天工程大学研究生院, 北京 101416
2 航天工程大学宇航科学与技术系, 北京 101416
3 航天工程大学航天指挥学院, 北京 101416
太阳能电池作为一种高效的光电转化器, 被广泛地应用于光伏发电系统中。 激光作为一种高亮度光源辐照电池时, 会导致其出现损伤, 可利用电池的表面散射光谱特性, 对其损伤程度进行判别。 通过目标表面散射光谱测量系统, 对激光辐照后的三结砷化镓电池散射光谱进行测量, 并计算双向反射分布函数(BRDF)。 其中测量系统主要由FX 2000和NIR 17型光纤光谱仪组成, 针对电池表面的强镜反射特性, 在实验中采用了入射角和反射角为30°的测量几何模型。 原始三结砷化镓太阳能电池的结构主要包括减反射膜DAR层、 顶电池GaInP层、 中电池GaAs层和底电池Ge层, 其散射光谱特征包括可见光谱段(500~900 nm)的吸收特性及近红外谱段(900~1 200 nm)的类周期振荡特性, 在对连续激光辐照损伤后电池的光谱特性进行实验测量后, 得到了损伤电池光谱BRDF的变化, 并结合基于薄膜干涉理论的电池散射光谱模型, 对各膜层损伤后的特征进行了分析。 结果表明: DAR层的主要作用是降低光谱反射能量, 对光谱曲线的特性影响较小; Ge层对光谱曲线形状基本无影响; 电池散射光谱吸收和干涉等特征主要由GaInP层和GaAs层所引起, 其中, GaInP层主要影响可见光谱段的吸收特性, 并对近红外谱段内的干涉特性起到调制作用, 而GaAs层主要影响近红外谱段的干涉特性, 当其损伤到一定程度后, 会导致可见光谱段内出现干涉特性。 最后, 在实验结果分析的基础上, 通过模型研究了电池各层对散射光谱特性的影响, 并讨论了基于散射光谱特性的电池损伤程度判别, 研究结果可为电池激光损伤判别提供参考。
激光辐照 三结化镓电池 散射光谱 表面形貌 损伤特性 Laser irradiation Triple junction gallium arsenide battery Scattered spectrum Surface appearance Damage characteristics 
光谱学与光谱分析
2023, 43(12): 3674
作者单位
摘要
1 郑州师范学院化学化工学院, 河南 郑州 450044
2 华电郑州机械设计研究院有限公司, 河南 郑州 450046
3 郑州大学河南先进技术研究院, 河南 郑州 450003
砷污染问题已经在世界范围内引起了广泛关注, 砷的去除也随即成为有待解决的问题, 三价砷的毒性远远高于五价砷, 地下水中砷主要以三价砷存在。 水体中砷的除去与其水化特征密切相关, 而有关不同质子化亚砷酸[HmAsO3]m-3(m=2, 3)周围水化特征的研究少之甚少, 更无[HmAsO3]m-3(m=2, 3)水化层的红外光谱特征研究。 利用B3LYP/6-311G(d, p)方法优化并计算了[HmAsO3(H2O)12]m-3(m=3, 2)水化能, 采取约化密度梯度函数填色等值面分析水分子与[HmAsO3]m-3(m=3, 2)物种相互作用类型、 位置及强度, 并详尽解析[HmAsO3(H2O)12]m-3(m=3, 2)水化团簇红外光谱特征。 研究得出, [HmAsO3(H2O)12]m-3(m=3, 2)水化团簇中HmAsO3倾向分布在水化团簇的表面, H3AsO3比H2AsO-3水化能力低。 有趣地发现, H3AsO3第一水化层通过氢键形成了一个变形的六元环, 氢键的平均键长为1.79 ; 而H2AsO-3第一水化层通过氢键形成了一个变形的五元环, 氢键的平均键长也为1.79 。 红外光谱中, [H3AsO3(H2O)12]0的As—OP(质子化O)伸缩振动峰701和637 cm-1与FTIR实验光谱中的数据一致, 而[H2AsO3(H2O)12]-的As—OP伸缩振动峰为573, 562和449 cm-1, 发生了明显红移, 其As—ON(未质子化O)伸缩振动峰为798 cm-1。 [H3AsO3(H2O)12]0中独立OP—H伸缩振动峰为3 696 cm-1, OP—H…OW中OP—H伸缩振动峰3 598和3 105 cm-1; [H2AsO3(H2O)12]-中独立OP—H伸缩振动峰为3 678 cm-1, OP—H…OW中OP—H伸缩振动峰为3 576 cm-1。 H3AsO3第一水化层组成的六元环中OW—HW…OW的OW—HW特征伸缩振动峰为3 233和2 911 cm-1且弯曲振动峰为1 606 cm-1, 而当第一水化层中水与H3AsO3中H或OP形成氢键导致OW—HW伸缩振动峰和弯曲振动峰都蓝移。 H2AsO-3第一水化层组成的五元环中OW—HW…OW的OW—HW特征伸缩振动峰为3 383 cm-1, 且OW—HW弯曲振动峰为1 680, 1 674和1 660 cm-1; 当H2AsO-3第一水化层中水与H2AsO-3的H形成HW—OW…H时导致OW—HW伸缩振动峰蓝移而弯曲振动峰红移, 第一水化层中水与H2AsO-3的OP或ON形成氢键时导致OW—HW伸缩振动峰红移而弯曲振动峰蓝移。 相对于H3AsO3第一水化层红外特征, H2AsO-3第一水化层OW—HW伸缩振动峰和弯曲振动峰都发生了蓝移。
 水化特征 红外光谱 Arsenite Hydration characteristics Infrared spectrum 
光谱学与光谱分析
2023, 43(7): 2090
作者单位
摘要
西南交通大学 微电子研究所, 成都 611756
为了降低沟槽MOSFET器件导通电阻, 提出了在传统沟槽MOSFET器件体区注入N型杂质的方案, 优化了体区杂质浓度分布, 从而降低导通电阻。经仿真验证, 选择N+源区注入后注入砷, 在能量为300 keV, 剂量为7×1012 cm-2条件下, 特征导通电阻能降低13%, 阈值电压降低218%; 选择接触孔刻蚀后注入磷, 在能量为100 keV, 剂量为4×1012 cm-2条件下, 特征导通电阻降低43%, 阈值电压几乎不变。
沟槽MOSFET 注入 耐压 阈值电压 导通电阻 trench MOSFET phosphorus and arsenic injection break voltage threshold voltage on-resistance 
微电子学
2023, 53(4): 730
作者单位
摘要
1 金陵科技学院 材料工程学院,南京 211169
2 南京理工大学 理学院,南京 210094
为了定量研究红外激光辐照下砷化镓的损伤过程,采用波长1080 nm的光纤激光作为光源,接收砷化镓前后表面经激光照射产生的散射光,依据接收到的散射光强度对损伤过程进行实时监测,并建立有限元模型研究了砷化镓温度场和散射信号的演变规律。结果表明,散射曲线的3个阶段分别代表了砷化镓处于非本征吸收阶段、本征吸收阶段和表面损伤阶段; 当激光功率密度为1.8 kW/cm2、辐照时间为193 ms时,表面开始损伤,可以观察到滑移线; 对损伤中心的元素含量进行分析,氧元素含量大大增加,说明热应力和氧化反应是激光致砷化镓表面产生损伤的主要机制。此研究可为激光辐照过程中砷化镓的温升、热应力和烧蚀等深入研究提供理论和实验依据。
激光技术 损伤 散射信号 化镓 laser technique damage scattering signal GaAs 
激光技术
2023, 47(4): 480
作者单位
摘要
国防科技大学 前沿交叉学科学院,长沙 410073
基于TCAD数值仿真软件,建立了异面结构砷化镓光导开关(GaAs PCSS)的二维数值计算模型,研究了触发区域宽度对GaAs PCSS输出特性影响。首先分析了PCSS的瞬态导通特性,结果表明,急剧增加的载流子浓度与快速演化的空间电离畴使PCSS工作在超快速导通模式。基于此,研究了触发区域宽度对PCSS输出特性影响,结果表明,宽度变大会促进载流子密度急剧倍增和雪崩电离畴的快速演化,缩短PCSS的延迟时间和导通时间。研究分析了不同触发位置对延迟时间与导通时间影响,结果表明,阴极触发的延迟时间明显低于阳极触发,而导通时间受触发位置的影响不显著。
化镓 光电导半导体开关 异面电极 雪崩电离畴 超快速导通 gallium arsenide photoconductive semiconductor switch opposed structure electrode multiple avalanche domains ultrafast-switching mode 
强激光与粒子束
2023, 35(10): 105004
作者单位
摘要
北京科技大学 数理学院应用物理系,北京 100083
采用等离子体增强原子层沉积(PEALD)技术在斜切的砷化镓(GaAs)衬底上低温沉积了氮化镓(GaN)薄膜,对生长过程、表面机制以及界面特性等进行分析,得到GaN在215~270 ℃的温度窗口内生长速度(Growth-Per-Cycle,GPC)为0.082 nm/cycle,并从表面反应动力学和热力学方面对GPC的变化进行了分析。研究发现,生长的GaN薄膜为多晶,具有六方纤锌矿结构,且出现(103)结晶取向。在GaN/GaAs界面处观察到约1 nm厚的非晶层,这可能与生长前衬底表面活性位点的限制和前驱体的空间位阻效应有关。值得注意的是,在沉积的GaN薄膜中,所有的N皆与Ga以Ga-N键结合生成GaN,但是存在少部分Ga形成了Ga-O键和Ga-Ga键。这种成键方式,可能与GaN薄膜中存在的缺陷和杂质有关。
等离子增强原子层沉积 氮化镓 化镓衬底 低温 plasma-enhanced atomic layer deposition GaN GaAs substrate low temperature 
半导体光电
2023, 44(4): 573
作者单位
摘要
1 南昌航空大学测试与光电工程学院,江西 南昌 330063
2 南昌航空大学无损检测技术教育部重点实验室,江西 南昌 330063
基于超短激光脉冲泵浦砷化镓(GaAs)p-i-n异质结结构产生太赫兹辐射模型,通过数值模拟和理论分析,研究了干扰效应对产生太赫兹辐射的影响,以及i层厚度与干扰效应之间的相关性。结果显示,干扰效应会降低太赫兹脉冲的强度并使其频谱展宽,而且随着i层厚度的增加干扰效应的影响也在增加,该结果与已有的蒙特卡罗模拟结果相近。数值实验表明,超短激光泵浦GaAs p-i-n结构产生太赫兹脉冲源自于该结构中i层内的载流子振荡,且太赫兹脉冲特性依赖于载流子的浓度分布,干扰效应的影响以及载流子浓度分布依赖于i层厚度。
太赫兹技术 化镓 p-i-n异质结结构 干扰效应 
中国激光
2023, 50(22): 2214001
作者单位
摘要
1 暨南大学光电信息与传感技术广东普通高校重点实验室,广东 广州 510632
2 中国科学院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室,陕西 西安 710119
3 中国工程物理研究院应用电子学研究所,四川 绵阳 621900
4 广东工业大学广东省信息物理融合系统重点实验室,广东 广州 510006
5 季华实验室,广东 佛山 528200
太赫兹调制器作为太赫兹技术应用的重要器件之一,在太赫兹通信、成像和传感等领域具有广泛应用前景。但是目前太赫兹调制器调制深度、工作带宽、稳定性等有待提升,这制约了太赫兹技术的进一步推广与发展。基于此,设计并制备了一种新型光控砷化镓/侧边抛磨太赫兹光纤(SPTF)调制器,将砷化镓转移到太赫兹光纤抛磨区,增强太赫兹波倏逝场与砷化镓相互作用。在外置808 nm激光器照射下实现对太赫兹波幅度调制,调制深度达到97.4%。实验结果表明,这种新型的光纤调制器具有较好的光控调制效果。同时,该器件体积小、集成度高,具有广泛应用的潜力。
太赫兹调制器 侧边抛磨光纤 化镓 光控 调制深度 
激光与光电子学进展
2023, 60(18): 1811003

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!