王琦 1,2,3,*米佳帅 1
作者单位
摘要
1 东北大学信息科学与工程学院,辽宁 沈阳 110819
2 东北大学流程工业综合自动化国家重点实验室,辽宁 沈阳 110819
3 河北省微纳精密光学传感与检测技术重点实验室,河北 秦皇岛 066004

单像素成像通过调制光场测量场景对单个像素探测器的强度响应来还原场景图像,相比依赖阵列探测器捕捉图像信息的传统成像技术,在低成本、宽光谱及特定应用场景下具有出色表现。该技术是一种由物理域转为计算域的新型成像方式,因此众多研究在寻找高效的计算方式。由于神经网络在计算域中的强大学习能力,深度学习技术已经广泛应用于单像素成像中并取得了显著进展。将深度学习单像素成像分为数据驱动式、物理驱动式及混合驱动式,又在每个驱动模式下划分出神经网络用于“图像到图像”和神经网络用于“测量值到图像”两种成像方法。从6种角度综述基于深度学习的单像素成像方法的基本理论和典型案例,并讨论了各类方法的优势与不足。最后对基于深度学习的单像素成像方法进行总结与展望,有前景的应用包括高光谱成像、瞬态观测与目标检测。

单像素成像 深度学习 计算成像 神经网络 
激光与光电子学进展
2024, 61(10): 1000005
作者单位
摘要
1 中山大学电子与信息工程学院,广东 广州 510006
2 华南师范大学信息光电子科技学院,广东 广州 510631
3 华东师范大学精密光谱科学与技术国家重点实验室,上海 200241

生物组织折射率在微观上的不均匀分布造成了光学散射,进而导致了光在组织深处聚焦能力的丧失。波前整形技术通过补偿不同散射通道间的相位延迟,能够实现散射光的重新聚焦。该技术的有效实施依赖于散射过程的确定性,一旦散射过程在调控完成前发生变化,预补偿的相位将无法抵消散射带来的影响,最终会造成焦点强度的下降甚至是完全消失。然而在实际应用中,散射过程通常处于一个不断变化的动态状态,例如在生物活体内,血液的流动、心跳,以及呼吸等动态生理活动均会引起散射过程的动态变化。因此,为了保障波前整形技术在生物活体中的应用开展,提升波前整形系统的调控速度显得尤为关键。针对该问题,本综述主要对高速波前整形的发展现状进行了回顾,概述了调控速度的未来优化方向,分析并展望了其在生命科学中的潜在应用和前景。

波前整形 高速调控 散射介质 光学相位共轭 引导星 超声调制 
激光与光电子学进展
2024, 61(10): 1000004
作者单位
摘要
吉林大学电子科学与工程学院集成光电子学国家重点实验室,吉林 长春 130012

微透镜阵列作为一种光学元件,凭借高分辨率、无限景深的特性可以实现高质量成像,在光通信、光传感等领域也有重要应用。近年来,光电子学、微纳米技术、智能材料等学科的发展促进了对微透镜阵列进行调谐的相关研究,使得微透镜阵列突破了固定焦距的缺陷,大大提高了器件的灵活性。总结微透镜的形状调谐、折射率调谐和超透镜的调谐3个方面的最新研究进展,详细地阐述微透镜阵列的调谐原理和过程,探讨各种调谐方式的优势和不足之处,并介绍了可调谐微透镜阵列的应用前景,最后展望了可调谐微透镜阵列未来的发展趋势。

微透镜阵列 复眼 可调谐微透镜阵列 集成光学元件 
激光与光电子学进展
2024, 61(10): 1000002
黄婷 1,2林楠 1,*张秋月 1,2何天将 1,2[ ... ]马骁宇 1,2
作者单位
摘要
1 中国科学院半导体研究所光电子器件国家工程研究中心,北京 100083
2 中国科学院大学材料科学与光电技术学院,北京 100049
半导体可饱和吸收镜(SESAM)作为超快激光技术中最常用的被动锁模器件,由于可自启动、插入损耗小、集成度高和设计灵活等优点,具有广泛的应用范围和极佳的商业前景。本文主要介绍SESAM的锁模原理和发展现状,对目前SESAM的外延结构、生长方式和参数性能进行总结归纳,详尽描述其在固体激光器、半导体激光器和光纤激光器的锁模最新进展,并指出各类锁模激光器的性能特点和未来发展方向。
半导体可饱和吸收镜 被动锁模 激光器 超快激光 
激光与光电子学进展
2024, 61(9): 0900008
作者单位
摘要
鲁东大学交通学院,山东 烟台 264025
微粒非规则、微粒非各向同性和介质非均匀的三非环境普遍存在。三非环境中受微粒散射和吸收作用的影响,光信号的传输性能与作用距离会减弱。例如,雾、霾和云等低能见度环境会降低飞机、汽车和轮船出行的安全性,在浑浊水域中搜寻与潜航作业困难,而将偏振特性用于表征光在三非环境中的传输过程可为提取良好的光信号和增加作用距离提供可行方案。阐述微粒非规则、微粒非各向同性和介质非均匀等3种情形下偏振传输特性:分析多种非球形微粒的国内外发展;列举等效多层同心粒子模型的相关数据并解释雾霾散射特性等问题的有效性;对非均匀介质开展分类研究并分析光线的传输过程中介质环境的影响。综述三非环境中偏振光的散射偏振特性的发展历程和研究现状,阐明三非环境中偏振传输特性研究的重要性,展望三非环境偏振传输问题的发展趋势。
散射 三非环境 偏振传输 
激光与光电子学进展
2024, 61(9): 0900007
杨通 1,2,*王永东 1,2吕鑫 1,2程德文 1,2王涌天 1,2
作者单位
摘要
1 北京理工大学光电学院,北京 100081
2 北京市混合现实与新型显示工程技术研究中心,北京 100081
光学自由曲面具备较高的设计自由度与像差校正能力;全息光学元件具备特有的波前调控特性、选择性、复用性、轻薄性与易加工性。在成像与显示光学系统设计中,将自由曲面与全息光学元件相融合,可以获得较为优秀的系统指标和系统性能,使系统形态更加紧凑、轻便,且得到离轴非对称的新型系统结构。简要介绍了自由曲面光学与全息光学元件的基本原理、光线追迹特性、应用领域等,阐述了自由曲面光学与全息光学元件的融合设计方法,基于对全息光学元件的分类,总结了融合自由曲面光学与全息光学元件的成像与显示光学系统的设计与应用,讨论了两类元件融合设计的限制因素并对未来的发展趋势进行了展望。
自由曲面光学 全息光学元件 融合设计 成像与显示系统 
光学学报
2024, 44(9): 0900001
王金阳 1夏津 1张慧亮 1,2,3,*
作者单位
摘要
1 河北工程大学数理科学与工程学院,河北 邯郸 056038
2 河北省计算光学成像与光电检测技术创新中心,河北 邯郸 056038
3 河北省计算光学成像与智能感测国际联合研究中心,河北 邯郸 056038
表面增强拉曼散射(SERS)是一种非接触式、无损伤、高灵敏的光谱分析技术,具备分子指纹识别能力,在材料学、化学、物理学、地质学和生命科学等学科有着广泛的应用。相较于传统的刚性基底,柔性SERS基底能够对非平面表面的分析物进行原位检测和现场实时检测。然而,设计和制备高灵敏、高重现性的柔性SERS基底仍存在一些挑战。因此,综述了柔性SERS基底的最新研究进展,探讨了5种不同类型柔性SERS基底的制备、性能和应用以及未来发展趋势,对SERS基底的研究具有一定指导意义。
光谱学 表面增强拉曼散射 柔性薄膜 纳米材料 快速检测 
激光与光电子学进展
2024, 61(9): 0900010
作者单位
摘要
北京航空航天大学医学科学与工程学院,北京 100191
扩散光学成像技术在生物医学领域有着广泛的应用。相较于磁共振成像(MRI)、计算机X射线断层扫描(CT)、正电子发射断层扫描(PET)和超声成像等成像方式,扩散光学成像利用经组织吸收和散射的扩散光进行成像,可无创、无标记、宽场、定量测量氧合血红蛋白、脱氧血红蛋白、血氧、水分、脂质、黑色素等成分浓度和组织功能信息,在安全性、特异性和系统成本等方面有明显优势。本文介绍了扩散光学成像的基本原理,包括光与组织的相互作用和光传播模型,并总结扩散光学成像的相关方法和应用,包括脉搏血氧术、漫射光谱、扩散光学层析成像、荧光分子层析成像和空间频域成像,并对它们的未来发展进行了展望。
扩散光学成像 组织光学 功能信息 生物医学光学 
激光与光电子学进展
2024, 61(8): 0800001
作者单位
摘要
1 中国科学院理化技术研究所有机纳米光子学实验室,北京 100190
2 中国科学院大学,北京 100049
三维(3D)无机微纳结构在光子学、量子信息、航空航天、能源等领域发挥着重要作用。利用传统制备方法获得的无机微结构通常分辨率较低和形貌不可控。因此,3D无机微纳结构的精确可控制备成为亟待解决的难题。激光加工具有高精度、形貌可控等优势,能够实现真3D、高分辨、多尺度复杂3D微纳结构的制备,解决3D无机微纳结构的精确可控制备难题。本文综述了激光加工制备无机微纳结构的研究进展,首先讨论了连续激光和超快脉冲激光加工方式,重点针对飞秒激光加工技术,阐述了基于纯无机材料体系、有机-无机杂化体系,以及聚合物模板法等制备3D无机微纳结构的方法。随后,总结了近年来激光加工3D无机微纳结构在光学器件、量子芯片、信息存储与防伪、航空航天以及仿生结构等领域的应用。最后,展望了激光加工3D无机微纳结构的未来发展趋势。
三维无机微纳结构 激光加工 飞秒激光 光与物质相互作用 微型器件 
激光与光电子学进展
2024, 61(19): 1900001
周瑶 1,2费鹏 1,2,*
作者单位
摘要
1 华中科技大学光学与电子信息学院,湖北 武汉 430074
2 高端生物医学成像省部共建重大科技基础设施,湖北 武汉 430074
显微镜的光学孔径和测量带宽的有限性限制了生物应用中的信息获取,包括在观测生物体系的精细亚细胞结构动力学过程、活体超快瞬态生物学过程,以及介观离体组织的高效三维成像等,这一问题成为多领域生物医学研究的制约因素。传统荧光显微镜的局限性促使研究人员着手探索新型荧光显微成像原理和方法。研究者们引入了人工智能手段,以提高荧光显微成像的速度和精度,从而增加信息获取的通量。本文以细胞生物学、发育生物学和肿瘤医学为视角,详细分析了在这些领域中通量限制带来的挑战。结合深度学习,突破了传统荧光显微成像的通量限制问题,为物理光学和图像处理领域的进一步发展提供了契机。这一创新助力于生物医学研究的推进,使科学家能够更全面、深入地理解生命和健康领域的复杂现象。因此,本研究不仅对生物医学领域具有重要意义,而且为未来的研究和应用提供了崭新的可能性。
荧光显微 深度学习 超分辨成像 超快成像 高通量成像 
激光与光电子学进展
2024, 61(16): 1600001

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!