激光与光电子学进展, 2024, 61 (19): 1900001, 网络出版: 2024-04-03  

中国光学十大进展:三维无机微纳结构的激光加工与应用(特邀)【增强内容出版】

China's Top 10 Optical Breakthroughs: Laser Fabrication and Applications of 3D Inorganic Micro and Nanostructures (Invited)
作者单位
1 中国科学院理化技术研究所有机纳米光子学实验室,北京 100190
2 中国科学院大学,北京 100049
摘要
三维(3D)无机微纳结构在光子学、量子信息、航空航天、能源等领域发挥着重要作用。利用传统制备方法获得的无机微结构通常分辨率较低和形貌不可控。因此,3D无机微纳结构的精确可控制备成为亟待解决的难题。激光加工具有高精度、形貌可控等优势,能够实现真3D、高分辨、多尺度复杂3D微纳结构的制备,解决3D无机微纳结构的精确可控制备难题。本文综述了激光加工制备无机微纳结构的研究进展,首先讨论了连续激光和超快脉冲激光加工方式,重点针对飞秒激光加工技术,阐述了基于纯无机材料体系、有机-无机杂化体系,以及聚合物模板法等制备3D无机微纳结构的方法。随后,总结了近年来激光加工3D无机微纳结构在光学器件、量子芯片、信息存储与防伪、航空航天以及仿生结构等领域的应用。最后,展望了激光加工3D无机微纳结构的未来发展趋势。
Abstract
Three-dimensional (3D) inorganic micro and nanostructures play an important role in photonics, quantum information, aerospace, energy, and other fields. Inorganic microstructures prepared using traditional methods usually exhibit low resolution and uncontrollable morphology. The precise and controllable fabrication of 3D inorganic micro and nanostructures is a critical problem. Because of advantages such as 3D fabrication capability, high precision, and controllable morphology, laser fabrication can realize the preparation of 3D, high-resolution, and multiscale micro and nanostructures; furthermore, it can address the problem of accurate and controllable preparation of these 3D structures. In this study, the research progress of laser fabrication of inorganic micro and nanostructures was reviewed. First, continuous wave and ultrafast pulse laser fabrication methods were discussed, and especially, the femtosecond laser fabrication of 3D inorganic microstructures and nanostructures, including pure inorganic material systems, organic-inorganic hybrid systems, and polymer templates, were summarized. Further, the applications of 3D micro and nanostructures in optical devices, quantum chips, information storage, aerospace, and bionic structures in recent years were summarized. Finally, we highlighted the potential future development of the laser fabrication of 3D inorganic micro and nanostructures.

1 引言

无机材料具有优异的热稳定性和化学稳定性,较高的刚度和硬度,出色的光、电、磁学特性,在科研生产和日常生活中日益发挥重要作用。基于无机材料所制备的三维(3D)无机微纳结构具有小尺度、高精度等特点,能够适应高温、高压等极端环境。因此,3D无机微纳结构在光学微器件1-2、光数据存储和信息加密3-4、量子芯片5-6、航空航天7-8、微流控系统9-10和仿生学11-12等领域有着广泛的应用前景。

3D无机微纳结构的传统制备方法如化学刻蚀13-14、溶胶-凝胶法15-16、模板法17-18等,大多存在过程繁琐、复杂图案受限、精度较低、加工时间长等问题。因此,研究人员开发了一系列新的无机微结构加工技术:利用熔融沉积成型19-20制备机械性能良好的陶瓷,形成曲面、齿轮、牙齿等复杂结构;诱导自组装21-22析出晶体结构,产生特定形貌特征;通过墨水直写技术23-25,将特制纳米复合油墨从喷嘴挤出,打印出具有良好的光学性能和折射率梯度的无机平板光学微器件;使用数字光3D打印技术26加工出具有复杂3D形状的陶瓷刀具。这些微纳加工技术增强了对复杂微图案的设计加工能力,但尚难以精准构筑具有高精度和高分辨率的复杂3D无机微结构,仍无法满足各领域对3D无机微结构微型化、集成化和高性能化的新需求。

激光加工技术作为制备3D微纳结构的重要手段,能够实现真3D、高分辨、多尺度3D微纳结构加工,包括连续激光加工技术和超快脉冲激光加工技术。连续激光加工技术是以连续激光作为光源,经过聚焦后作用于加工对象,属于“热加工”技术27-28。超快激光加工技术作为一种新兴技术手段,具有超短激光脉冲、超高能量密度的特点29-31,有望加工出具有复杂结构和高分辨率的3D无机微纳结构。由于与材料相互作用的时间极短,超快激光辐照区域的热效应几乎可以忽略不计,被认为是“冷加工”技术。超快激光加工技术可以通过加工纯无机材料、有机-无机杂化材料以及聚合物模板辅助等途径得到3D无机微纳结构。Liu等32利用超快飞秒激光诱导化学键合,以超越衍射极限的分辨率直接打印出任意3D量子点结构,有望应用于制造自由形态的量子点光电器件。Bauer等33采用有机-无机低聚倍半硅氧烷(POSS)光刻胶,利用飞秒激光结合高温烧结,形成3D高精度石英玻璃微纳结构和光子学器件。激光加工3D无机微纳结构无需掩模版、无污染、零接触、适合材料范围广,可以用来制备结构紧凑、尺寸小的集成化微结构,在光学器件34、微流控35、量子芯片36、仿生学37-38等领域有着广阔的前景。

本文介绍了激光加工3D无机微纳结构的研究进展与发展现状。首先简要概括了连续激光、皮秒激光加工制备的3D无机微结构,进一步详细讨论了基于纯无机材料体系、有机-无机杂化体系以及聚合物模板辅助等的飞秒激光加工3D无机微纳结构的研究现状。随后,本文总结了激光加工3D无机微纳结构在光学器件、量子芯片、信息存储与防伪、航空航天以及仿生学等领域的应用。最后,对激光加工3D无机微纳结构的未来发展趋势进行了展望。

2 3D无机微纳结构的激光加工技术

激光加工技术具有高精度、非接触、可控性强、材料适应性广等特点,通过光与物质相互作用,实现对材料的切割、打孔、雕刻和微结构加工等。激光加工技术按照使用的光源类型可分为连续激光加工技术和脉冲激光加工技术,其中脉冲激光加工技术主要基于皮秒激光和飞秒激光。激光加工技术具有高分辨、低成本的优势,成为构筑3D无机微结构的重要途径。近年来,激光加工制备的各种3D无机微结构已经广泛应用于**建设和生命健康等领域。

2.1 连续激光加工3D无机微纳结构

连续激光加工3D无机微结构是无机材料通过吸收激光能量,发生各种物理化学效应,从而形成所需的3D无机微结构。Hu等3发现在473 nm半导体激光照射下,稀土离子掺杂的磷酸钨玻璃产生可逆的发光调制,颜色由浅黄色变为蓝色,实现了信息数据在透明玻璃内的任意写入与擦除[图1(a)]。Liu等39-40利用二氧化碳(CO2)激光加热直径为196 μm的熔融石英玻璃丝,实现熔融石英层与层之间的键合,制备了105层的3D玻璃结构和高质量的微透镜阵列[图1(b)、(c)]。Toombs等41利用442 nm激光对掺杂二氧化硅(SiO2)纳米粒子的光刻胶进行立体光固化得到有机-无机3D微结构,随后高温烧结去除有机成分,制备出内径为150 μm的3D微流体通道及最小特征尺寸为50 μm的复杂高强度桁架和点阵结构[图1(d)]。Zhao等42利用980 nm近红外连续激光作为光源,通过喷墨打印陶瓷浆料结合光固化形成稳定自支撑结构,打印出多尺度扭转弹簧、3D弯曲、悬梁臂等3D陶瓷微结构,为无支撑3D陶瓷微结构和器件的构筑与应用提供了新思路[图1(e)]。连续激光加工技术虽然能够稳定灵活地在多种材料表面或内部制备出3D无机微纳结构,但其加工的精度低,且存在热效应,难以满足高精度3D无机微纳结构的制备需求。

图 1. 连续激光加工3D无机微纳结构。(a)473 nm连续激光在玻璃内写入图案信息3;(b)CO2激光加工的105层3D玻璃结构的实物照片(左)和侧壁截面的光学显微镜图像(右)39;(c)CO2激光加工的玻璃微透镜阵列,右图是单个微透镜成像效果图40;(d)442 nm连续激光加工的3D透明玻璃微结构41;(e)980 nm 连续激光打印的3D无支撑陶瓷微结构42

Fig. 1. Continuous wave (CW) laser fabrication of 3D inorganic micro and nanostructures. (a) 473 nm CW laser writes patterning information in glass [3]; (b) photograph of 105 layers glass structure processed by CO2 laser (left), optical microscope image of sidewall section (right) [39]; (c) glass microlens array processed by CO2 laser, the image on the right is the image effect of a single microlen[40]; (d) 3D transparent glass microstructures processed by 442 nm CW laser[41]; (e) unsupported ceramic microstructures fabricated by 980 nm CW laser [42]

下载图片 查看所有图片

2.2 皮秒激光加工3D无机微纳结构

皮秒激光加工技术由于高峰值功率密度能够实现3D微纳结构的加工。皮秒脉冲激光与材料作用时间短,有效地降低了连续激光加工中的热效应,能够以较低的热影响实现复杂3D微纳结构的加工。皮秒激光加工技术在无机微纳结构加工中具有独特的优势和应用潜力,可以实现高断裂强度的区域焊接43。Penilla等44利用皮秒激光脉冲照射,在室温条件下将具有复杂形状的陶瓷微结构进行焊接,有望应用于温度敏感的微机械系统等领域[图2(a)]。其次,皮秒激光还可用于直写材料表面或内部的微流控通道45-47图2(b)]。Wlodarczyk等47利用皮秒脉冲激光在透明玻璃基底实现了微流控的快速加工[图2(c)]。皮秒激光还可用于制备微孔结构48和多级粗糙结构49。Nguyen等50利用皮秒激光在无机玻璃上加工出各种微纳分级结构,如西兰花状和锥形微结构等,实现超疏水性能。此外,利用激光脉冲照射无机光刻胶氢倍半硅氧烷(HSQ),HSQ发生交联反应产生3D结构,经加热后得到光学性能、机械性能优异的3D石英玻璃微纳结构51图2(d)]。

图 2. 皮秒激光加工3D无机微纳结构。(a)皮秒激光焊接陶瓷组件44;(b)损伤通道端面图46;(c)皮秒激光在透明玻璃内嵌入3D结构47;(d)皮秒激光加工HSQ得到玻璃3D微结构51

Fig. 2. Picosecond laser fabricating 3D inorganic micro and nanostructures. (a) Picosecond laser welding ceramic components[44]; (b) end face of damaged channel[46]; (c) picosecond laser embedded 3D structure in transparent glass[47]; (d) 3D microstructure of glass fabricated by picosecond laser fabricating HSQ[51]

下载图片 查看所有图片

2.3 飞秒激光加工3D无机微纳结构

飞秒激光作为一种“冷加工”技术52-53,已经成为精密加工领域的重要手段,可以制备出高精度、复杂3D微结构。飞秒激光加工3D无机微纳结构按照所使用材料的不同,大致可以分成三类。第一类是使用飞秒激光直接加工纯无机材料如玻璃、光学晶体、陶瓷和量子点等形成3D无机微纳结构。第二类是利用飞秒激光加工有机-无机杂化材料先形成复杂3D微纳结构,然后经过热处理去除有机成分,形成致密的、光学性质和机械性能优良的3D无机微纳结构。有机-无机杂化材料又分为可转化为无机材料的光刻胶前驱体,以及无机纳米颗粒掺杂有机光刻胶两种材料体系。第三类是通过聚合物模板法辅助制备3D无机微纳结构,即通过飞秒激光加工先制备出聚合物模板,再利用沉积、溅射等手段将无机材料涂覆在表面,最后经过热处理、等离子体刻蚀、特定溶液降解等去除聚合物得到3D无机微纳结构。

2.3.1 飞秒激光加工纯无机材料制备3D无机微纳结构

玻璃具有优良的透光性、化学稳定性、生物相容性、机械强度等,玻璃微纳结构在集成光子学和量子芯片等领域中具有极大的应用价值。1996年,Davis等54首次利用810 nm飞秒激光在块体玻璃内部留下微纳线条结构,证明飞秒激光可在玻璃内部书写光波导结构[图3(a)]。De Aldana等55利用飞秒激光加工Er3+/Yb3+离子共掺的透明氟氧化物纳米玻璃陶瓷,实现了平面和3D光波导,拓宽了在集成有源光子器件领域的应用。针对飞秒激光在玻璃中直写的波导结构弯曲损耗问题,Liu等56通过将弯曲波导夹在飞秒激光写入玻璃内时产生的垂直壁之间,加速区域折射率的变化,将损耗减小至0.3 dB[图3(b)]。飞秒激光加工技术还能在玻璃表面和内部写入各种波导和微通道等57-61。Qiu等62利用飞秒激光照射诱导玻璃内部使得金纳米颗粒选择性析出[图3(c)]。Li等63利用近红外飞秒激光脉冲在石英玻璃内部制备光栅等折射率型元器件,并通过钻孔引入蒸馏水,在钠钙玻璃中加工出纵横比较大的微细直孔,制备了直线型和波浪型等不同形状的线条。玻璃优良的光学性能不仅可以制备特定的光传递通道,还能够可逆存储数据,实现在信息加密和防伪领域的应用64图3(d)]。Sun等65提出通过超快激光诱导纳米相分离,从而实现内部成分可调的钙钛矿纳米晶体,所制备的3D图案化纳米晶在全彩印刷、光存储、微型发光以及全息成像等领域展现很好的应用前景[图3(e)]。飞秒激光在玻璃中形成发光钙钛矿纳米晶在防伪编码、微结构图案化等方面也具有潜在的应用价值66-68。2022年,Jin等69利用飞秒激光多光子加工技术,在HSQ光刻胶中实现了仅为激光波长1/30的26 nm特征尺寸SiO2结构的直写,大大超越光学衍射极限。利用该技术制备了多种具有优异的耐高温和耐溶剂特性的3D无机微结构与器件,为应用于极端环境的功能微纳器件的制备拓宽了思路[图3(f)]。

图 3. 飞秒激光加工玻璃基质的3D无机微纳结构。(a)飞秒激光在玻璃内写入永久痕迹54;(b)飞秒激光在玻璃内写入低损耗的弯曲波导56;(c)飞秒激光在掺Au玻璃内部的图案化62;(d)飞秒激光在玻璃内写入包含深度信息的图像64;(e)飞秒激光在玻璃中制备3D CsPbBr3纳米晶体结构65;(f)飞秒激光在HSQ上加工3D无机微结构69

Fig. 3. Femtosecond laser fabrication of 3D inorganic micro and nanostructures in glass. (a) Permanent trace in glass[54]; (b) femtosecond laser writes low loss curved waveguide in glass[56]; (c) patterning of femtosecond laser inside Au doped glass[62]; (d) femtosecond laser writing of depth information in glass[64]; (e) CsPbBr3 nanocrystalline structures prepared by femtosecond laser[65]; (f) femtosecond laser writing 3D inorganic microstructure based on HSQ[69]

下载图片 查看所有图片

光学晶体具有较大的非线性光学系数、稳定的理化性质和良好的机械强度,被用于制备光波导、光调制器等光子学器件。研究人员利用飞秒激光加工技术在钇铝石榴石(YAG∶Nd3+)晶体70、硫化锌(ZnS)晶体71、掺铥氟化钇锂(Tm∶YLF)晶体72、三硼酸锂(LBO)晶体73、铌酸锂晶体(LiNbO374、钛蓝宝石(Ti∶ sapphire)晶体75和蓝宝石(sapphire)晶体76中制备了预定形状的波导结构[图4(a)~(d)],降低传输过程的损耗。LiNbO3晶体具有光电效应和性能可调控性,研究人员利用飞秒激光在LiNbO3晶体中进行纳米级分辨率的可重构3D铁电畴工程,在高效混频、高频声谐振器和高容量非挥发性铁电体中具有重大应用前景77-78图4(e)]。2023年,Wu等79通过飞秒激光在LiNbO3中实现了可切换弯曲方向的非线性艾里光束,在光捕获、光通信和生物医学成像等领域具有广泛的应用前景。Zhu等80利用飞秒激光微加工制备二进制计算机全息图,在单块LiNbO3晶体加工特定图案实现二次谐波全息成像[图4(f)]。

图 4. 飞秒激光在光学晶体中加工3D无机微纳结构。(a)YAG∶Nd3+中刻写的凹陷包层波导的端视图70;(b)LiNbO3晶体中写入波导端面图74;(c)ZnS晶体中波导的截面71;(d)LBO晶体中产生的双线(No.1)和凹陷包层(No.2)波导73;(e)飞秒激光在LiNbO3晶体中的纳米级调控78;(f)飞秒激光在LiNbO3晶体中写入特定图案的全息图像80

Fig. 4. Femtosecond laser fabricating 3D inorganic micro and nanostructures in optical crystal. (a) End view of concave cladding waveguide written in YAG∶Nd3+ [70]; (b) waveguide end face written in LiNbO3 crystal[74]; (c) cross section of waveguide in ZnS crystal[71]; (d) double line (No.1) and concave cladding (No.2) waveguides generated in LBO crystal[73]; (e) nanoscale regulation of femtosecond laser in LiNbO3 crystal[78]; (f) femtosecond laser writes holograms of specific patterns in LiNbO3 crystal[80]

下载图片 查看所有图片

量子点因其优异的光学性能和尺寸调控特性,而被广泛应用于微纳发光器件和显示等领域。Liu等32提出光激发诱导化学键合,利用飞秒激光照射半导体量子点激发出的空穴转移到纳米晶体表面,从而诱导粒子间的化学键合,打印出高精细3D量子点结构[图5(a)]。Li等81将双叠氮分子与纳米晶体溶液混合,利用飞秒激光照射引发颗粒间的交联反应,采用CdSe/ZnS核壳量子点打印出洋红色3D纳米柱阵列“龙”图案[图5(b)]。2023年,Liang等82利用飞秒激光诱导钙钛矿量子点正向转移,将薄膜上的钙钛矿量子点转移到衬底上,制备出分辨率达2 μm的阵列,在高分辨率的全彩显示和信息加密防伪领域具有潜在的应用前景。

图 5. 飞秒激光加工3D量子点、陶瓷微结构。(a)飞秒激光诱导量子点化学键合形成3D无机微纳结构32;(b)飞秒激光打印混合量子点形成3D纳米柱阵列81;(c)飞秒激光在陶瓷中以螺旋式运动加工圆形波导84

Fig. 5. Femtosecond laser fabrication of 3D inorganic micro and nanostructures based on ceramics and quantum dots. (a) Femtosecond laser-induced chemical bonding of quantum dots to form 3D inorganic micro and nanostructures[32]; (b) femtosecond laser printing of mixed quantum dots to form a 3D nanopillar array[81]; (c) femtosecond laser fabricating circular waveguides in ceramics with spiral motion[84]

下载图片 查看所有图片

陶瓷材料因其硬度大、脆性大、耐高温、耐磨损、耐腐蚀的优势,广泛用于航空航天、电子器件、生物医药等领域。但其较大的刚硬度和较差的透明度,导致传统加工方式难以制造出3D异形结构。而利用飞秒激光加工技术,无需掩模版就能够高精度地加工复杂陶瓷微结构。Castillo-Vega等83对光学透明氧化钇稳定氧化锆(YSZ)陶瓷进行激光加工,辐照区域光学性质发生永久性变化。随后沿螺旋轨迹写入激光,成功制备出圆形波导84图5(c)]。

2.3.2 飞秒激光加工有机-无机前驱体光刻胶制备3D无机微纳结构

飞秒激光加工有机-无机前驱体光刻胶能够制备出3D无机微结构。首先,利用飞秒激光加工出前驱体光刻胶微纳结构,再经过高温处理等去除有机成分,得到3D无机微纳结构85图6(a)]。Yee等86利用飞秒激光直写含有金属离子的光固化树脂,制备出特征尺寸为250 nm的氧化锌3D微结构[图6(b)]。Gailevičius等87利用飞秒激光在光刻胶SZ2080中制备出几百纳米的3D结构,随后烧结去除有机物成分,形成陶瓷3D微结构[图6(c)]。由于有机-无机前驱体光刻胶中有机物的含量较高,高温热处理会引起结构较大的收缩,甚至会导致3D图案的扭曲和分层88-89图6(d)、(e)]。为了减小热后处理过程中产生的收缩,Park等90利用双功能无机聚合物烯丙基氢化聚碳硅烷(AHPCS)和有机金属(Z5-环戊二烯基甲基)-三甲基铂(CpPtMe3)作为添加剂,从光敏前驱体中制备了具有优异的尺寸稳定性和本征机械强度的近零收缩的碳化硅陶瓷微结构[图6(f)]。Hong等91开发了一种无溶剂、甲基丙烯酰氧基改性的SiO2前驱体,先制备出微透镜和光栅等结构,然后在600 ℃的温度下完全转化为透明的玻璃结构,收缩率为17%,表面粗糙度低于6 nm[图6(g)]。2023年,Bauer等33提出了一种中等温度烧结的飞秒激光加工复杂三维熔融石英玻璃纳米结构,成功制备出特征尺寸97 nm的熔融石英微结构。这项研究通过飞秒激光加工有机-无机POSS杂化光刻胶,加工出高质量的3D结构,随后经过650 ℃的热处理将该结构转化为熔融石英玻璃3D微结构,大大降低了后期热处理的温度,为熔融石英玻璃3D微纳结构的制备提供了新途径[图6(h)]。

图 6. 飞秒激光在含无机组分的前驱体光刻胶中加工3D无机微纳结构。(a)自支撑非球面微透镜85;(b)十四面体晶胞86;(c)自由形态雕塑87;(d)微米十字扭转结构88;(e)干燥收缩过程引起3D结构裂纹89;(f)多孔微通道结构90;(g)印刷在支撑柱上的微透镜91;(h)150 μm高的多透镜衍射微物镜33

Fig. 6. Femtosecond laser fabricating of 3D inorganic micro and nanostructures in precursor photoresist containing inorganic components. (a) Self supporting aspheric microlens [85]; (b) tetrahedral cell [86]; (c) free form sculpture [87]; (d) micron cross torsion structure [88]; (e) drying shrinkage process causes 3D structural cracks [89]; (f) porous microchannel structure [90]; (g) microlens printed on support column [91]; (h) 150 μm-high diffractive micro objective lens[33]

下载图片 查看所有图片

2.3.3 飞秒激光加工无机纳米颗粒掺杂光刻胶体系制备3D无机微纳结构

通过将无机纳米颗粒掺杂到有机光刻胶中,利用飞秒激光加工结合高温烧结,即“掺杂-加工-烧结”工序,可实现3D无机微纳结构的制备。Kotz等92利用飞秒激光直写含SiO2纳米颗粒的光刻胶,制备了具有几十微米分辨率和表面粗糙度约为6 nm的3D熔融石英玻璃,该结构在780 nm波长处显现出91.6%的高透明度[图7(a)]。Desponds等93将45%氧化锆纳米颗粒掺入丙烯酸锆前驱体中,通过控制纳米粒子的尺寸,利用飞秒激光3D微加工和进一步热处理,成功制备出周期为0.8 μm的微透镜阵列[图7(b)]。2021年,Wen等94将功能化的SiO2纳米粒子掺杂到光刻胶中,利用飞秒激光加工和后烧结工艺加工出具有200 nm分辨率的高质量复杂3D SiO2微结构[图7(c)],在构建高品质因子值的微环谐振器和集成SiO2微光子芯片方面展现出较大的潜力。Sänger等95利用高达80%负载量的YSZ透明陶瓷浆料,通过飞秒激光加工技术制备出复杂的3D陶瓷微结构,分辨率达到了500 nm,经高温烧结后得到抗压强度与纯YSZ相当的致密陶瓷结构[图7(d)]。

图 7. 飞秒激光加工无机纳米粒子掺杂的光刻胶制备3D无机微纳结构。(a)透明玻璃微结构92;(b)悬垂线93;(c)玻璃圆盘桁架结构(左)和八面体桁架结构(右)94;(d)陶瓷点阵立方体95

Fig. 7. Femtosecond laser fabrication of 3D inorganic micro and nanostructures based on inorganic nanoparticles doped photoresists. (a) Transparent glass microstructure[92]; (b) pendant [93]; (c) disk truss structure (left) and octahedral truss structure (right)[94]; (d) ceramic lattice cube [95]

下载图片 查看所有图片

2.3.4 聚合物模板法辅助制备3D无机微纳结构

飞秒激光加工技术还可以通过聚合物模板法辅助加工3D无机微纳结构。首先,利用飞秒激光加工出3D聚合物微结构作为模板,随后通过沉积、溅射等将无机材料涂覆在聚合物模板表面,经热处理、等离子体刻蚀、特定溶液降解等去除模板获得3D无机微纳结构。Meza等96-97采用飞秒激光加工3D支架结构,通过原子层沉积在支架上沉积一层氧化铝薄膜,利用聚焦离子束打磨最外层和氧等离子体刻蚀技术制备了空心管状氧化铝纳米点阵[图8(a)]。Kotz等10则提出飞秒激光加工DNA双螺旋结构和微流控通道模板,再将聚合物模板嵌入纳米复合材料中,经光照射后纳米复合材料聚合,随后热处理去除聚合物形成复杂中空微玻璃结构[图8(b)]。Xia等98通过飞秒激光加工出周期性3D四方微点阵,并在点阵上溅射一层厚度约为100 nm的Ni层,随后在Ni膜上沉积约300 nm的非晶态Si层,制备出高度均匀的聚合物/Ni/Si杂化结构[图8(c)]。2021年,Diamantopoulou等99提出刚度和形状恢复性较好的双壁陶瓷纳米晶格[图8(d)]。2022年,Liu等100提出了一种飞秒激光加工牺牲模板的方法,制备了含纳米颗粒有序排列的复杂无机3D微结构,最小特征尺寸可达到3 μm[图8(e)]。

图 8. 聚合物模板法辅助飞秒激光加工制备3D无机微纳结构。(a)氧化铝八面体桁架纳米晶格97;(b)DNA双螺旋中空玻璃微结构10;(c)3D硅纳米结构98;(d)双壁陶瓷纳米晶格99;(e)3D中空螺旋微管结构100

Fig. 8. 3D inorganic micro and nanostructures prepared by the polymer template assisted femtosecond laser fabrication method. (a) Alumina octahedral truss nanolattice[97]; (b) microstructure of DNA double helix hollow glass[10]; (c) 3D silicon nanostructure[98]; (d) double-well ceramic nanolattice[99]; (e) 3D hollow spiral microtubule structure[100]

下载图片 查看所有图片

3 应用

激光加工技术无接触、无污染、加工速度快、精度高,是制备3D无机微纳结构的重要手段。与传统加工技术相比,激光加工技术更能满足新型功能器件微型化、集成化的发展需求,制备出形状尺寸可控的复杂3D无机微纳结构,在微型光子学器件、量子技术、信息存储与加密、航空航天以及仿生结构等领域有着广泛的应用。

3.1 光学器件

激光加工技术制备的3D无机微纳结构广泛应用于构筑微型光学器件,如集成光子学的基本元件回音壁微谐振腔、自由曲面透镜等。Fang等101利用飞秒激光在LiNbO3中制备了品质因子高达107的回音壁微谐振腔。Wen等94基于SiO2纳米复合材料打印出高品质因子的微环回音壁谐振腔[图9(a)]。Kotz等92对SiO2纳米复合材料进行飞秒激光直写,制备出透明的光学微透镜,成功对细胞结构进行显微成像[图9(b)]。Hong等2提出了具有高固化速度的新型液体石英树脂,利用飞秒激光加工后低温烧结,实现表面粗糙度低于5 nm的高精度自由曲面玻璃光学器件,同时成功制备出具有多个光学元件和主动运动元件的复杂光学系统,为微光学系统提供了新途径[图9(c)]。Jin等69利用飞秒激光直写HSQ,构筑的光学微器件菲涅耳透镜具有良好的耐热性能和耐溶剂性能,为飞秒激光制备耐极端环境的微型无机光学微器件提供了新方法[图9(d)]。2023年,Huang等51利用HSQ制备出亚微米分辨率的光子微型环芯谐振器与总线波导[图9(e)]。Bauer等33利用飞秒激光加工结合650 ℃后热处理制备出熔融石英玻璃自由曲面微光学器件,展示了出色的光学性能[图9(f)]。激光加工技术的高效率、高精度为微型化、集成化和可设计的微光学器件的制备奠定了坚实的基础。

图 9. 3D无机微结构在光学微器件中的应用。(a)微环光学谐振腔94;(b)玻璃微透镜92;(c)Alvarez透镜2;(d)菲涅耳透镜69;(e)光子微型环芯谐振器51;(f)非球面轮廓的平凸微透镜33

Fig. 9. Application of 3D inorganic microstructure as optical micro devices. (a) Microring optical resonator[94]; (b) glass microlens[92]; (c) Alvarez lens[2]; (d) Fresnel lens[69]; (e) photonic micro ring resonator[51]; (f) plano convex microlens with aspheric profile[33]

下载图片 查看所有图片

3.2 量子芯片

量子芯片作为量子计算机的核心,是目前各国竞相追逐的科学前沿。利用飞秒激光在玻璃、铌酸锂等无机材料中加工微型波导等结构,是构筑量子芯片的重要途径。Flamini等102利用飞秒激光在玻璃中写入动态可重构的集成光子电路,实现了对单光子态和双光子态的调控,条纹可见度大于95%,为可重构光量子电路开辟了道路[图10(a)]。飞秒激光不仅能写入光波导处理偏振编码量子位103,还能加工波导定向耦合器等其他元件,如Marshall等104利用飞秒激光在熔融石英玻璃中制备出量子芯片中重要的定向耦合器[图10(b)]。无论是在量子计算领域,还是在量子模拟领域,光量子芯片在信息处理上均展示了强大的功能105。Tang等106使用飞秒激光直写二维波导阵列实现连续量子行走,制备了节点数为49×49,多达2401个节点的光量子计算芯片[图10(c)]。Li等6利用飞秒激光直写技术在玻璃中制备出由Hadamard和可控非门(CNOT)组成的集成光量子芯片,产生了四个路径编码的贝尔纠缠态,可应用于各种高质量高保真度的光量子集成芯片。2022年,Li等107设计并展示了基于飞秒激光制备技术的路径编码光量子Toffoli门芯片,将二维量子线路优化为更简洁的3D立交桥状波导,消除了与其他波导间的交叉和耦合,大大提升了量子芯片的性能[图10(d)]。2023年,Skryabin等108利用飞秒激光构筑了一个低损耗的可重构光子芯片,实现了单量子比特和两量子比特操作。飞秒激光加工量子芯片的方法能够将3D路径和偏振等自由度结合,进一步简化量子线路,降低损耗,从而实现更复杂、更强大的3D光量子芯片的制备。

图 10. 激光加工3D无机微纳结构应用于量子芯片。(a)飞秒激光图案化加工电阻器102;(b)飞秒激光在玻璃内部直写光波导(左)和波导定向耦合器(右)104;(c)飞秒激光直写3D波导阵列(左上),光子晶格截面图(左下),3D波导阵列中一个波导耦合到其他波导的示意图(右上),单光子在晶格中量子行走后输出的演化图案(右下)106;(d)飞秒激光直写路径编码三量子比特Toffoli门107

Fig. 10. Laser fabrication of 3D inorganic micro and nanostructures for quantum chips. (a) Femtosecond laser patterns resistors[102]; (b) femtosecond laser directly writing optical waveguide (left) and waveguide directional coupler (right)inside the glass[104]; (c) femtosecond laser direct writing 3D waveguide array (top left), photonic lattice section (bottom left), schematic diagram of coupling one waveguide to other waveguides in a 3D waveguide array (upper right), and evolution pattern of single photon output after quantum walk in the lattice (lower right)[106]; (d) 3D layout of three qubit Toffoli gate encoded by femtosecond laser direct writing path[107]

下载图片 查看所有图片

3.3 信息存储与加密

3D无机微纳结构存储信息具有长期稳定性和多样性,通过设计和组装能够大大提高存储容量和存储稳定性。1996年,Glezer等109利用飞秒激光脉冲聚焦在透明材料内部,产生较大折射率的亚微米比特,可用于永久性的3D光学数据存储。Smetanina等110利用飞秒激光脉冲在掺银磷酸盐玻璃中诱导形成局域二次和三次谐波,实现非线性光数据存储。在3D无机微纳结构中结合量子点的荧光特性,通过光学防伪进一步保障信息存储的安全性。2020年,Huang等66利用飞秒激光在玻璃中形成蓝光钙钛矿纳米晶,可以在玻璃中写入3D图案,该荧光图案在激光的照射下,可以局部擦除后恢复,为信息存储安全、防伪编码提供了应用价值67图11(a)、(b)]。Sun等65利用飞秒激光直接在玻璃内诱导钙钛矿纳米晶,产生多色的发光图案,增强了防伪效果[图11(c)]。2023年Liang等82实现了高分辨全彩的钙钛矿量子点阵列和任意微图案的制备,在荧光防伪领域具有广阔的应用前景。

图 11. 激光加工3D无机微纳结构的应用。(a)飞秒激光擦除/恢复过程66;(b)QR码加密演示67;(c)Cl-Br-—I-共掺杂玻璃图案化65;(d)激光焊接侧面图112;(e)激光焊接成功的装配图44;(f)传感器内的垂直波导7;(g)储仓微结构115;(h)圆偏振激光脉冲加工熔融石英117;(i)裸石英玻璃和带有抗反射结构的石英玻璃效果对比118;(j)截锥阵列119

Fig. 11. Application of laser fabricated 3D inorganic micro and nanostructures. (a) Femtosecond laser erasure/recovery[66]; (b) QR code encryption demonstration[67]; (c) patterning of Cl-Br-—I- codoped glass[65]; (d) side view of laser welding[112]; (e) assembly drawing of successful laser welding[44]; (f) vertical waveguide in the sensor[7]; (g) microstructure of storage bin[115]; (h) fabrication of fused quartz by circularly polarized laser pulses[117]; (i) effect comparison between bare quartz glass and quartz glass with anti-reflective structure[118]; (j) truncated cone array [119]

下载图片 查看所有图片

3.4 航空航天

航空航天领域的零部件需要耐高温、优良机械性能、高精度等性质来应对极端的外界环境。陶瓷因其低导热系数、低密度等优良性质,成为航空航天零部件的重要材料。激光加工可以实现陶瓷等材料的焊接及其他加工技术,在航空航天器的组装、修复与维护中发挥着重要作用。Tamaki等111利用飞秒激光在不使用胶水等中间层的情况下实现透明玻璃材料间缝隙小于λ/4的焊接。Richter等112则实现3 μm的均匀间隙焊接,且成功焊接的熔融石英稳定性达原始材料85%[图11(d)],Penilla等44实现了更复杂几何形状陶瓷的高强度连接[图11(e)]。2023年Zuo等113通过对氧化铝激光焊缝裂纹特征进行研究,优化工艺参数,保证了焊接区域母材和焊缝不会产生宏观裂缝,为高质量激光焊接奠定了基础。此外,Royon等7利用激光直写制备了基于溶胶-凝胶光波导传输的传感器,TiO2-SiO2和ZrO2-SiO2分别作为波导芯层和包层,集成在飞机机翼上。该传感器经过多个波导或处于-40 ℃~80 ℃环境,性能仍不受影响,尤其适用于极端环境下的检测,在航空损伤和分层检测上具有应用前景[图11(f)]。

3.5 仿生学

激光加工技术能够制备出多种仿生无机微结构,造福人类。Lee等114根据梯度硅基膜模拟原始人类毛细胞频率的选择功能,结合激光剥离制备出柔性无机压电纳米声传感器。Liang等115利用飞秒激光在石英玻璃上刻写新型3D仿生光滑表面,该结构将润滑剂储存在内部,在毛细管力的作用下运输到表面,具有良好的表面耐久性和光学透光率[图11(g)]。2017年Liu等116基于飞秒激光结合相位掩模在ZnS薄膜上获得大面积的周期性结构。Papadopoulos等117模拟自然界生物表面微结构,首次利用圆偏振超短脉冲激光直接在熔融石英玻璃上产生具有全向抗反射性的纳米柱结构[图11(h)]。随后,Duan等模仿自然界蝉和蜻蜓的翅膀,利用飞秒激光微加工技术,在光学玻璃和MgF2表面上分别制备了用于减反射的仿生纳米结构阵列,表现出优良的图像捕捉性能和抗干扰性能118-119图11(i)、(j)]。

4 结束语

激光加工技术无论是在精度还是图案设计自由度上,都呈现出优异的加工能力,广泛应用于科学研究、**民生等领域120-121。近年来,激光加工3D无机微纳结构分辨率达到纳米量级,突破光学衍射极限,实现了复杂微纳结构的3D制备,为微纳尺度下多种材料高精度的加工提供了基础,也为微纳电子器件、光学微器件、超表面、量子芯片等领域的发展提供了重要支撑。目前,飞秒激光加工3D无机微纳结构多采用逐点扫描的方式,加工效率较低,不适合批量化生产。飞秒激光与数字微镜(DMD)结合能很好地解决该问题,通过DMD面投影,能够快速地加工出大面积、复杂微结构,大大提高了加工效率122-124。Saha等125基于投影逐层打印出宽度小于175 nm的纳米线,完成亚微米分辨率的任意复杂3D结构。Liu等126提出使用高效跨尺度图案化的无掩模光学投影纳米光刻技术,单次曝光实现最小特征尺寸32 nm,突破了光学衍射极限,进一步实现了尺寸超数百微米、精度达数十纳米的微结构的快速制备。Wang等127利用无掩模光学投影技术制备Ag/聚苯胺壳-核结构的纳米复合材料,在多种基底上制备出微纳尺度下的纳米复合图案,且具有一定的导电性和表面增强拉曼特性,为传感器和探测器等微纳器件的制备开辟了新的途径。然而,目前基于DMD的飞秒激光加工技术主要针对有机材料,将其与无机微纳结构的加工相结合,必将大大提高3D无机微纳结构的加工效率。随着新材料和新技术的不断发展,激光加工制备3D无机微纳结构必将在光学、信息、能源、生物工程等领域展示出更为广阔的应用前景。

参考文献

[1] Hua J G, Liang S Y, Chen Q D, et al. Free-form micro-optics out of crystals: femtosecond laser 3D sculpturing[J]. Advanced Functional Materials, 2022, 32(26): 2200255.

[2] Hong Z H, Ye P R, Loy D A, et al. High-precision printing of complex glass imaging optics with precondensed liquid silica resin[J]. Advanced Science, 2022, 9(18): 2105595.

[3] Hu Z, Huang X J, Yang Z W, et al. Reversible 3D optical data storage and information encryption in photo-modulated transparent glass medium[J]. Light: Science & Applications, 2021, 10: 140.

[4] Hong M H, Luk’yanchuk B, Huang S M, et al. Femtosecond laser application for high capacity optical data storage[J]. Applied Physics A, 2004, 79(4): 791-794.

[5] Tang H, Di Franco C, Shi Z Y, et al. Experimental quantum fast hitting on hexagonal graphs[J]. Nature Photonics, 2018, 12(12): 754-758.

[6] Li M, Zhang Q, Chen Y, et al. Femtosecond laser direct writing of integrated photonic quantum chips for generating path-encoded bell states[J]. Micromachines, 2020, 11(12): 1111.

[7] Royon M, Jamon D, Blanchet T, et al. Sol–gel waveguide-based sensor for structural health monitoring on large surfaces in aerospace domain[J]. Aerospace, 2021, 8(4): 109.

[8] Xu W L, Lu Z L, Tian G Q, et al. Fabrication of single-crystal superalloy hollow blade based on integral ceramic mold[J]. Journal of Materials Processing Technology, 2019, 271: 615-622.

[9] Jipa F, Orobeti S, Butnaru C, et al. Picosecond laser processing of photosensitive glass for generation of biologically relevant microenvironments[J]. Applied Sciences, 2020, 10(24): 8947.

[10] Kotz F, Risch P, Arnold K, et al. Fabrication of arbitrary three-dimensional suspended hollow microstructures in transparent fused silica glass[J]. Nature Communications, 2019, 10: 1439.

[11] Zhao H W, Liu S J, Wei Y, et al. Multiscale engineered artificial tooth enamel[J]. Science, 2022, 375(6580): 551-556.

[12] Guan Q F, Yang H B, Han Z M, et al. An all-natural bioinspired structural material for plastic replacement[J]. Nature Communications, 2020, 11: 5401.

[13] Butkutė A, Merkininkaitė G, Jurkšas T, et al. Femtosecond laser assisted 3D etching using inorganic-organic etchant[J]. Materials, 2022, 15(8): 2817.

[14] Hu C, Aubert T, Justo Y, et al. The micropatterning of layers of colloidal quantum dots with inorganic ligands using selective wet etching[J]. Nanotechnology, 2014, 25(17): 175302.

[15] Ros-Tárraga P, Murciano A, Mazón P, et al. New 3D stratified Si-Ca-P porous scaffolds obtained by sol-gel and polymer replica method: microstructural, mineralogical and chemical characterization[J]. Ceramics International, 2017, 43(8): 6548-6553.

[16] Warren S C, Perkins M R, Adams A M, et al. A silica sol-gel design strategy for nanostructured metallic materials[J]. Nature Materials, 2012, 11(5): 460-467.

[17] Zhou Y, Li M Y, Wang Y T, et al. Synthesis of sea urchin-like ZnO by a simple soft template method and its photoelectric properties[J]. Materials Science in Semiconductor Processing, 2014, 27: 1050-1056.

[18] Kotz F, Plewa K, Bauer W, et al. Liquid glass: a facile soft replication method for structuring glass[J]. Advanced Materials, 2016, 28(23): 4646-4650.

[19] Niu F R, Yang X L, Li Y B, et al. Fused deposition modeling of Si3N4 ceramics: a cost-effective 3D-printing route for dense and high performance non-oxide ceramic materials[J]. Journal of the European Ceramic Society, 2022, 42(15): 7369-7376.

[20] Cunico M W M. Investigation of ceramic dental prostheses based on ZrSiO4-glass composites fabricated by indirect additive manufacturing[J]. International Journal of Bioprinting, 2021, 7(1): 90-99.

[21] Josten E, Angst M, Glavic A, et al. Strong size selectivity in the self-assembly of rounded nanocubes into 3D mesocrystals[J]. Nanoscale Horizons, 2020, 5(7): 1065-1072.

[22] Shimotsuma Y, Tomura K, Okuno T, et al. Femtosecond laser-induced self-assembly of Ce3+-doped YAG nanocrystals[J]. Crystals, 2020, 10(12): 1142.

[23] Nguyen D T, Meyers C, Yee T D, et al. 3D-printed transparent glass[J]. Advanced Materials, 2017, 29(26): 1701181.

[24] Dylla-Spears R, Yee T D, Sasan K, et al. 3D printed gradient index glass optics[J]. Science Advances, 2020, 6(47): eabc7429.

[25] Zhao S Y, Siqueira G, Drdova S, et al. Additive manufacturing of silica aerogels[J]. Nature, 2020, 584(7821): 387-392.

[26] He R X, Liu W, Wu Z W, et al. Fabrication of complex-shaped zirconia ceramic parts via a DLP- stereolithography-based 3D printing method[J]. Ceramics International, 2018, 44(3): 3412-3416.

[27] Yan Y Z, Li L, See T L, et al. CO2 laser peeling of Al2O3 ceramic and an application for the polishing of laser cut surfaces[J]. Journal of the European Ceramic Society, 2013, 33(10): 1893-1905.

[28] Kostyukov A I, Snytnikov V N, Yelisseyev A P, et al. Synthesis, structure and optical properties of the laser synthesized Al2O3 nanopowders depending on the crystallite size and vaporization atmosphere[J]. Advanced Powder Technology, 2021, 32(8): 2733-2742.

[29] Bin F C, Guo M, Li T, et al. Carbazole-based anion ionic water-soluble two-photon initiator for achieving 3D hydrogel structures[J]. Advanced Functional Materials, 2023, 33(39): 2300293.

[30] Guo M, Liu X Y, Li T, et al. Cross-scale topography achieved by MOPL with positive photoresist to regulate the cell behavior[J]. Small, 2023, 19(49): 2303572.

[31] Zhou M X, Jin F, Wang J Y, et al. Dynamic color-switching of hydrogel micropillar array under ethanol vapor for optical encryption[J]. Small, 2023, 19(47): 2304384.

[32] Liu S F, Hou Z W, Lin L H, et al. 3D nanoprinting of semiconductor quantum dots by photoexcitation-induced chemical bonding[J]. Science, 2022, 377(6610): 1112-1116.

[33] Bauer J, Crook C, Baldacchini T. A sinterless, low-temperature route to 3D print nanoscale optical-grade glass[J]. Science, 2023, 380(6648): 960-966.

[34] 廖常锐, 李博哲, 邹梦强, 等. 光纤集成微纳结构器件的双光子聚合制备及应用[J]. 激光与光电子学进展, 2021, 58(13): 1306005.

    Liao C R, Li B Z, Zou M Q, et al. Optical fiber integrated micro/nano-structured device fabricated by femtosecond laser induced two-photon polymerization and its applications[J]. Laser & Optoelectronics Progress, 2021, 58(13): 1306005.

[35] Liao Y, Song J X, Li E, et al. Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing[J]. Lab on a Chip, 2012, 12(4): 746-749.

[36] Wang C Y, Gao J, Jiao Z Q, et al. Integrated measurement server for measurement-device-independent quantum key distribution network[J]. Optics Express, 2019, 27(5): 5982-5989.

[37] Yu Y D, Kong K R, Tang R K, et al. A bioinspired ultratough composite produced by integration of inorganic ionic oligomers within polymer networks[J]. ACS Nano, 2022, 16(5): 7926-7936.

[38] Xiao C L, Li M, Wang B J, et al. Total morphosynthesis of biomimetic prismatic-type CaCO3 thin films[J]. Nature Communications, 2017, 8: 1398.

[39] Liu C X, Oriekhov T, Fokine M. Investigation of glass bonding and multi-layer deposition during filament-based glass 3D printing[J]. Frontiers in Materials, 2022, 9: 978861.

[40] LiuC X, OriekhovT, LeeC, et al. Rapid fabrication of silica microlens arrays via glass 3D printing[EB/OL]. [2023-09-07]. https://www.liebertpub.com/doi/epub/10.1089/3dp.2022.0112.

[41] Toombs J T, Luitz M, Cook C C, et al. Volumetric additive manufacturing of silica glass with microscale computed axial lithography[J]. Science, 2022, 376(6590): 308-312.

[42] Zhao Y Q, Zhu J Z, He W Y, et al. 3D printing of unsupported multi-scale and large-span ceramic via near-infrared assisted direct ink writing[J]. Nature Communications, 2023, 14: 2381.

[43] Nordin I H W, Okamoto Y, Okada A, et al. Effect of wavelength and pulse duration on laser micro-welding of monocrystalline silicon and glass[J]. Applied Physics A, 2016, 122(4): 400.

[44] Penilla E H, DeviaCruz L F, Wieg A T, et al. Ultrafast laser welding of ceramics[J]. Science, 2019, 365(6455): 803-808.

[45] Li X L, Xu J, Lin Z J, et al. Polarization-insensitive space-selective etching in fused silica induced by picosecond laser irradiation[J]. Applied Surface Science, 2019, 485: 188-193.

[46] 李世雄, 张正平, 陈德良, 等. 皮秒激光在熔融石英中诱导微爆炸形成微腔的研究[J]. 激光与红外, 2019, 49(7): 808-812.

    Li S X, Zhang Z P, Chen D L, et al. Study on the micro cavities in the bulk of fused silica produced by picosecond laser-induced microexplosion[J]. Laser & Infrared, 2019, 49(7): 808-812.

[47] Wlodarczyk K L, Hand D P, Maroto-Valer M M. Maskless, rapid manufacturing of glass microfluidic devices using a picosecond pulsed laser[J]. Scientific Reports, 2019, 9: 20215.

[48] 李鑫, 张彤, 季凌飞, 等. 皮秒激光扫描硅材料微孔自成形行为及机理研究[J]. 激光与光电子学进展, 2022, 59(1): 0114005.

    Li X, Zhang T, Ji L F, et al. Study on self-forming behavior and mechanism of silicon microholes by picosecond laser scanning[J]. Laser & Optoelectronics Progress, 2022, 59(1): 0114005.

[49] Wang Z, Nandyala D, Colosqui C E, et al. Glass surface micromachining with simultaneous nanomaterial deposition by picosecond laser for wettability control[J]. Applied Surface Science, 2021, 546: 149050.

[50] Nguyen H H, Tieu A K, Wan S H, et al. Surface characteristics and wettability of superhydrophobic silanized inorganic glass coating surfaces textured with a picosecond laser[J]. Applied Surface Science, 2021, 537: 147808.

[51] Huang P H, Laakso M, Edinger P, et al. Three-dimensional printing of silica glass with sub-micrometer resolution[J]. Nature Communications, 2023, 14: 3305.

[52] 杨建军. 飞秒激光超精细“冷”加工技术及其应用(I)[J]. 激光与光电子学进展, 2004, 41(3): 42-52, 57.

    Yang J J. Femtosecond laser “cold” micro-machining and its advanced applications[J]. Laser & Optoelectronics Progress, 2004, 41(3): 42-52, 57.

[53] 杨建军. 飞秒激光超精细“冷”加工技术及其应用(续)[J]. 激光与光电子学进展, 2004, 41(4): 39-47.

    Yang J J. Femtosecond laser “cold” micro-machining and its advanced applications[J]. Laser & Optoelectronics Progress, 2004, 41(4): 39-47.

[54] Davis K M, Miura K, Sugimoto N, et al. Writing waveguides in glass with a femtosecond laser[J]. Optics Letters, 1996, 21(21): 1729-1731.

[55] De Aldana J R V, Romero C, Fernandez J, et al. Femtosecond laser direct inscription of 3D photonic devices in Er/Yb-doped oxyfluoride nano-glass ceramics[J]. Optical Materials Express, 2020, 10(10): 2695-2704.

[56] Liu Z M, Liao Y, Fang Z W, et al. Suppression of bend loss in writing of three-dimensional optical waveguides with femtosecond laser pulses[J]. Science China Physics, Mechanics & Astronomy, 2018, 61(7): 070322.

[57] Sugioka K, Cheng Y. Fabrication of 3D microfluidic structures inside glass by femtosecond laser micromachining[J]. Applied Physics A, 2014, 114(1): 215-221.

[58] Nasu Y, Kohtoku M, Hibino Y. Low-loss waveguides written with a femtosecond laser for flexible interconnection in a planar light-wave circuit[J]. Optics Letters, 2005, 30(7): 723-725.

[59] Hughes M, Yang W, Hewak D. Fabrication and characterization of femtosecond laser written waveguides in chalcogenide glass[J]. Applied Physics Letters, 2007, 90(13): 131113.

[60] Dharmadhikari J A, Dharmadhikari A K, Bhatnagar A, et al. Writing low-loss waveguides in borosilicate (BK7) glass with a low-repetition-rate femtosecond laser[J]. Optics Communications, 2011, 284(2): 630-634.

[61] Tan Y X, Chu W, Wang P, et al. Water-assisted laser drilling of high-aspect-ratio 3D microchannels in glass with spatiotemporally focused femtosecond laser pulses[J]. Optical Materials Express, 2019, 9(4): 1971-1978.

[62] Qiu J R, Jiang X W, Zhu C S, et al. Manipulation of gold nanoparticles inside transparent materials[J]. Angewandte Chemie International Edition, 2004, 43(17): 2230-2234.

[63] Li Y, Guo H, An R, et al. Micro/nano-fabrication of condensed matters by near infrared femtosecond laser pulses[J]. Journal of Infrared and Millimeter Waves, 2005, 24(3): 182-184.

[64] Tu H H, Yuan T G, Wei Z W, et al. Fabrication of 3D computer-generated hologram inside glass by femtosecond laser direct writing[J]. Optical Materials, 2023, 135: 113228.

[65] Sun K, Tan D Z, Fang X Y, et al. Three-dimensional direct lithography of stable perovskite nanocrystals in glass[J]. Science, 2022, 375(6578): 307-310.

[66] Huang X J, Guo Q Y, Kang S L, et al. Three-dimensional laser-assisted patterning of blue-emissive metal halide perovskite nanocrystals inside a glass with switchable photoluminescence[J]. ACS Nano, 2020, 14(3): 3150-3158.

[67] Chen Q P, Huang X J, Yang D D, et al. Three-dimensional laser writing aligned perovskite quantum dots in glass for polarization-sensitive anti-counterfeiting[J]. Advanced Optical Materials, 2023, 11(10): 2300090.

[68] de Castro T, Fares H, Abou Khalil A, et al. Femtosecond laser micro-patterning of optical properties and functionalities in novel photosensitive silver-containing fluorophosphate glasses[J]. Journal of Non-Crystalline Solids, 2019, 517: 51-56.

[69] Jin F, Liu J, Zhao Y Y, et al. λ/30 inorganic features achieved by multi-photon 3D lithography[J]. Nature Communications, 2022, 13: 1357.

[70] Okhrimchuk A G, Shestakov A V, Khrushchev I, et al. Depressed cladding, buried waveguide laser formed in a YAG∶Nd3+ crystal by femtosecond laser writing[J]. Optics Letters, 2005, 30(17): 2248-2250.

[71] An Q, Ren Y Y, Jia Y C, et al. Mid-infrared waveguides in zinc sulfide crystal[J]. Optical Materials Express, 2013, 3(4): 466-471.

[72] Xiong Y J, Wang S X, Chen Z X, et al. Femtosecond laser direct writing of compact Tm∶YLF waveguide lasers[J]. Optics & Laser Technology, 2023, 167: 109786.

[73] Zhang B, Li Z Q, Li L Q, et al. Nonlinear waveguides by femtosecond laser writing of lithium triborate crystals[J]. Journal of Optics, 2022, 24(7): 074006.

[74] Thomas J, Heinrich M, Zeil P, et al. Laser direct writing: enabling monolithic and hybrid integrated solutions on the lithium niobate platform[J]. Physica Status Solidi (a), 2011, 208(2): 276-283.

[75] Bai J, Cheng G H, Long X W, et al. Polarization behavior of femtosecond laser written optical waveguides in Ti: Sapphire[J]. Optics Express, 2012, 20(14): 15035-15044.

[76] Bérubé J P, Lapointe J, Dupont A, et al. Femtosecond laser inscription of depressed cladding single-mode mid-infrared waveguides in sapphire[J]. Optics Letters, 2018, 44(1): 37-40.

[77] Wei D Z, Wang C W, Wang H J, et al. Experimental demonstration of a three-dimensional lithium niobate nonlinear photonic crystal[J]. Nature Photonics, 2018, 12(10): 596-600.

[78] Xu X Y, Wang T X, Chen P C, et al. Femtosecond laser writing of lithium niobate ferroelectric nanodomains[J]. Nature, 2022, 609(7927): 496-501.

[79] Wu D, Zhang Z H, Wang C W, et al. Generation of nonlinear Airy beams with switchable acceleration direction[J]. Journal of Optics, 2023, 25(7): 07LT01.

[80] Zhu B, Liu H G, Liu Y, et al. Second-harmonic computer-generated holographic imaging through monolithic lithium niobate crystal by femtosecond laser micromachining[J]. Optics Letters, 2020, 45(15): 4132-4135.

[81] Li F, Liu S F, Liu W Y, et al. 3D printing of inorganic nanomaterials by photochemically bonding colloidal nanocrystals[J]. Science, 2023, 381(6665): 1468-1474.

[82] Liang S Y, Liu Y F, Ji Z K, et al. High-resolution patterning of perovskite quantum dots via femtosecond laser-induced forward transfer[J]. Nano Letters, 2023, 23(9): 3769-3774.

[83] Castillo-Vega G R, Penilla E H, Camacho-López S, et al. Waveguide-like structures written in transparent polycrystalline ceramics with an ultra-low fluence femtosecond laser[J]. Optical Materials Express, 2012, 2(10): 1416-1424.

[84] Salamu G, Jipa F, Zamfirescu M, et al. Cladding waveguides realized in Nd∶YAG ceramic by direct femtosecond-laser writing with a helical movement technique[J]. Optical Materials Express, 2014, 4(4): 790-797.

[85] Gonzalez-Hernandez D, Varapnickas S, Merkininkaitė G, et al. Laser 3D printing of inorganic free-form micro-optics[J]. Photonics, 2021, 8(12): 577.

[86] Yee D W, Lifson M L, Edwards B W, et al. Additive manufacturing of 3D-architected multifunctional metal oxides[J]. Advanced Materials, 2019, 31(33): e1901345.

[87] Gailevičius D, Padolskytė V, Mikoliūnaitė L, et al. Additive-manufacturing of 3D glass-ceramics down to nanoscale resolution[J]. Nanoscale Horizons, 2019, 4(3): 647-651.

[88] Pham T A, Kim D P, Lim T W, et al. Three-dimensional SiCN ceramic microstructures via nano-stereolithography of inorganic polymer photoresists[J]. Advanced Functional Materials, 2006, 16(9): 1235-1241.

[89] Passinger S, Saifullah M S M, Reinhardt C, et al. Direct 3D patterning of TiO2 using femtosecond laser pulses[J]. Advanced Materials, 2007, 19(9): 1218-1221.

[90] Park S, Lee D H, Ryoo H I, et al. Fabrication of three-dimensional SiC ceramic microstructures with near-zero shrinkage via dual crosslinking induced stereolithography[J]. Chemical Communications, 2009(32): 4880-4882.

[91] Hong Z H, Ye P R, Loy D A, et al. Three-dimensional printing of glass micro-optics[J]. Optica, 2021, 8(6): 904-910.

[92] Kotz F, Quick A S, Risch P, et al. Two-photon polymerization of nanocomposites for the fabrication of transparent fused silica glass microstructures[J]. Advanced Materials, 2021, 33(9): e2006341.

[93] Desponds A, Banyasz A, Chateau D, et al. 3D printing and pyrolysis of optical ZrO2 nanostructures by two-photon lithography: reduced shrinkage and crystallization mediated by nanoparticles seeds[J]. Small, 2021, 17(42): e2102486.

[94] Wen X W, Zhang B Y, Wang W P, et al. 3D-printed silica with nanoscale resolution[J]. Nature Materials, 2021, 20(11): 1506-1511.

[95] Sänger J C, Pauw B R, Riechers B, et al. Entering a new dimension in powder processing for advanced ceramics shaping[J]. Advanced Materials, 2023, 35(8): 2208653.

[96] Meza L R, Greer J R. Mechanical characterization of hollow ceramic nanolattices[J]. Journal of Materials Science, 2014, 49(6): 2496-2508.

[97] Meza L R, Das S, Greer J R. Strong, lightweight, and recoverable three-dimensional ceramic nanolattices[J]. Science, 2014, 345(6202): 1322-1326.

[98] Xia X X, Afshar A, Yang H, et al. Electrochemically reconfigurable architected materials[J]. Nature, 2019, 573(7773): 205-213.

[99] Diamantopoulou M, Tancogne-Dejean T, Wheeler J M, et al. Double-wall ceramic nanolattices: increased stiffness and recoverability by design[J]. Materials & Design, 2021, 208: 109928.

[100] Liu K L, Ding H B, Li S, et al. 3D printing colloidal crystal microstructures via sacrificial-scaffold-mediated two-photon lithography[J]. Nature Communications, 2022, 13: 4563.

[101] Fang Z W, Haque S, Lin J T, et al. Real-time electrical tuning of an optical spring on a monolithically integrated ultrahigh Q lithium nibote microresonator[J]. Optics Letters, 2019, 44(5): 1214-1217.

[102] Flamini F, Magrini L, Rab A S, et al. Thermally reconfigurable quantum photonic circuits at telecom wavelength by femtosecond laser micromachining[J]. Light: Science & Applications, 2015, 4(11): e354.

[103] Zeuner J, Sharma A N, Tillmann M, et al. Integrated-optics heralded controlled-NOT gate for polarization-encoded qubits[J]. NPJ Quantum Information, 2018, 4: 13.

[104] Marshall G D, Politi A, Matthews J C F, et al. Laser written waveguide photonic quantum circuits[J]. Optics Express, 2009, 17(15): 12546-12554.

[105] 李萌, 李础, 李焱. 玻璃基集成光量子芯片:从二维到三维[J]. 物理, 2023, 52(8): 542-551.

    Li M, Li C, Li Y. Glass-based integrated quantum photonic chips: from 2D to 3D[J]. Physics, 2023, 52(8): 542-551.

[106] Tang H, Lin X F, Feng Z, et al. Experimental two-dimensional quantum walk on a photonic chip[J]. Science Advances, 2018, 4(5): eaat3174.

[107] Li M, Li C, Chen Y, et al. On-chip path encoded photonic quantum Toffoli gate[J]. Photonics Research, 2022, 10(7): 1533-1542.

[108] Skryabin N N, Kondratyev I V, Dyakonov I V, et al. Two-qubit quantum photonic processor manufactured by femtosecond laser writing[J]. Applied Physics Letters, 2023, 122(12): 121102.

[109] Glezer E N, Milosavljevic M, Huang L, et al. Three-dimensional optical storage inside transparent materials[J]. Optics Letters, 1996, 21(24): 2023-2025.

[110] Smetanina E O, Chimier B, Petit Y, et al. Laser writing of nonlinear optical properties in silver-doped phosphate glass[J]. Optics Letters, 2017, 42(9): 1688-1691.

[111] Tamaki T, Watanabe W, Nishii J, et al. Welding of transparent materials using femtosecond laser pulses[J]. Japanese Journal of Applied Physics, 2005, 44(5L): L687-L689.

[112] Richter S, Zimmermann F, Eberhardt R, et al. Toward laser welding of glasses without optical contacting[J]. Applied Physics A, 2015, 121(1): 1-9.

[113] Zuo Q Q, Zhang Y, Li P, et al. Effect of process parameters on crack characteristics in laser welding of Al2O3 ceramic[J]. Ceramics International, 2023, 49(20): 32440-32447.

[114] Lee H S, Chung J, Hwang G T, et al. Flexible inorganic piezoelectric acoustic nanosensors for biomimetic artificial hair cells[J]. Advanced Functional Materials, 2014, 24(44): 6914-6921.

[115] Liang J, Shan C, Wang H, et al. Highly stable and transparent slippery surface on silica glass fabricated by femtosecond laser[J]. Advanced Engineering Materials, 2022, 24(10): 2200708.

[116] Liu M N, Wang L, Yu Y H, et al. Biomimetic construction of hierarchical structures via laser processing[J]. Optical Materials Express, 2017, 7(7): 2208-2217.

[117] Papadopoulos A, Skoulas E, Mimidis A, et al. Biomimetic omnidirectional antireflective glass via direct ultrafast laser nanostructuring[J]. Advanced Materials, 2019, 31(32): 1901123.

[118] Wang H R, Zhang F, Yin K, et al. Bioinspired antireflective subwavelength nanostructures induced by femtosecond laser for high transparency glass[J]. Journal of Non-Crystalline Solids, 2023, 600: 122016.

[119] Ding Y L, Liu L P, Wang C, et al. Bioinspired near-full transmittance MgF2 window for infrared detection in extremely complex environments[J]. ACS Applied Materials & Interfaces, 2023, 15(25): 30985-30997.

[120] Li T, Liu J, Guo M, et al. Synthesis of biocompatible BSA-GMA and two-photon polymerization of 3D hydrogels with free radical type I photoinitiator[J]. International Journal of Bioprinting, 2023, 9(5): 752.

[121] Wang J Y, Jin F, Dong X Z, et al. Dual-stimuli cooperative responsive hydrogel microactuators via two-photon lithography[J]. Small, 2023, 19(40): 2303166.

[122] 高文, 郑美玲, 金峰, 等. 飞秒激光快速制备大面积二维微纳结构[J]. 激光与光电子学进展, 2020, 57(11): 111421.

    Gao W, Zheng M L, Jin F, et al. Fast fabrication of large-area two-dimensional micro/nanostructure by femtosecond laser[J]. Laser & Optoelectronics Progress, 2020, 57(11): 111421.

[123] 周子逸, 董贤子, 郑美玲. 数字微镜无掩模光刻技术进展及应用[J]. 激光与光电子学进展, 2022, 59(9): 0922030.

    Zhou Z Y, Dong X Z, Zheng M L. Evolution and application of digital micromirror device based maskless photolithography[J]. Laser & Optoelectronics Progress, 2022, 59(9): 0922030.

[124] Guo M, Li T, Zhang W C, et al. Wetting of cell aggregates on microdisk topography structures achieved by maskless optical projection lithography[J]. Small, 2023, 19(29): 2300311.

[125] Saha S K, Wang D, Nguyen V H, et al. Scalable submicrometer additive manufacturing[J]. Science, 2019, 366(6461): 105-109.

[126] Liu Y H, Zhao Y Y, Jin F, et al. λ/12 super resolution achieved in maskless optical projection nanolithography for efficient cross-scale patterning[J]. Nano Letters, 2021, 21(9): 3915-3921.

[127] Wang R R, Zheng M L, Zhang W C, et al. Micropattern of silver/polyaniline core-shell nanocomposite achieved by maskless optical projection lithography[J]. Nano Letters, 2022, 22(24): 9823-9830.

章剑苗, 金峰, 董贤子, 郑美玲. 中国光学十大进展:三维无机微纳结构的激光加工与应用(特邀)[J]. 激光与光电子学进展, 2024, 61(19): 1900001. Jianmiao Zhang, Feng Jin, Xianzi Dong, Meiling Zheng. China's Top 10 Optical Breakthroughs: Laser Fabrication and Applications of 3D Inorganic Micro and Nanostructures (Invited)[J]. Laser & Optoelectronics Progress, 2024, 61(19): 1900001.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!