人工晶体学报, 2023, 52 (11): 1931, 网络出版: 2023-12-05  

高纯低位错密度单晶金刚石的制备与表征

Preparation and Characterization of Single Crystal Diamond with High Purity and Low Dislocation Density
作者单位
1 北京科技大学新材料技术研究院, 北京 100083
2 湘潭大学材料科学与工程学院, 湘潭 411105
摘要
金刚石以高导热率、强抗辐射性、高的电子迁移率等优异性能, 成为辐射探测器最合适的材料之一。探测器级的金刚石要求具有极低的杂质含量及位错密度等, 然而实际过程中同时实现杂质和位错的控制十分困难。本研究采用微波等离子体化学气相沉积(MPCVD)法, 通过前期的参数优化, 在最佳生长温度780 ℃、最佳甲烷浓度5%条件下, 在两个高质量高温高压(HPHT)金刚石衬底样品上进行了MPCVD金刚石生长, 并对衬底和生长层的氮杂质含量与缺陷结构进行了综合表征与分析。电子顺磁共振谱结果表明, 相比两个HPHT衬底样品的氮杂质原子百分数分别为7.1×10-6%和4.04×10-6%, MPCVD生长层的氮杂质原子百分数明显减少, 分别为2.1×10-7%和5×10-8%。由X射线摇摆曲线和白光形貌术测试结果发现, 尽管MPCVD生长过程中引入了部分位错, 使生长层应力增加, 畸变区域较多, 但总体位错与高质量衬底为同一数量级。本研究制备的高纯单晶金刚石有望应用于核辐射探测及半导体领域。
Abstract
With its excellent properties such as high thermal conductivity, strong radiation resistance and high electron mobility, diamond has become one of the most suitable materials for radiation detectors. Detector-grade diamond requires low impurity content, low dislocation density and other defects. However, it is very difficult to keep low impurities and low dislocations simultaneously in the actual crystal growth process. In this study, microwave plasma chemical vapor deposition (MPCVD) method was used to grow diamond layer on two high-quality HPHT diamond substrates with the previously optimized process conditions. The nitrogen impurity content and structure of the HPHT substrate and growth layer were characterized and analyzed. The results show that, the content of nitrogen impurity on two HPHT substrates are 7.1×10-6% and 4.04×10-8%, respectively, whereas in their epitaxial diamond layers, the nitrogen impurity content are 2.1×10-7% and 5×10-8%, respectively. The full width at half-maximum of the rocking curve shows that the dislocation density of the MPCVD growth layer is comparable to the HPHT substrate, though some dislocations were introduced into the MPCVD growth layer, which increases the stress. Overall, the dislocations in the HPHT substrate and epitaxial layer of single crystal diamond are in the same order of magnitude. The high-purity single crystal diamond prepared in this work may be used in nuclear radiation detection and semiconductor fields.
参考文献

[1] 吴晓磊, 徐 帅, 赵延军, 等. CVD单晶金刚石[NV]和[SiV]缺陷的抑制与消除[J]. 金刚石与磨料磨具工程, 2020, 40(5): 42-44.

[2] 刘佳伟. 高性能金刚石辐照探测器的研究与应用[D]. 武汉: 武汉大学, 2019.

[3] 吴 超, 马志斌, 严 垒, 等. CVD单晶金刚石的研究进展[J]. 金刚石与磨料磨具工程, 2014, 34(1): 57-63.

[4] MARTINEAU P M, LAWSON S C, TAYLOR A J, et al. Identification of synthetic diamond grown using chemical vapor deposition (CVD)[J]. Gems & Gemology, 2004, 40(1): 2-25.

[5] TALLAIRE A, COLLINS A T, CHARLES D, et al. Characterisation of high-quality thick single-crystal diamond grown by CVD with a low nitrogen addition[J]. Diamond and Related Materials, 2006, 15(10): 1700-1707.

[6] 刘金龙, 李成明, 朱肖华, 等. 探测器级单晶金刚石材料的生长[J]. 人工晶体学报, 2019, 48(11): 1990-1991.

[7] 谢 雁, 赵 程, 彭红瑞, 等. 等离子体化学气相沉积反应中对温度因素的控制[J]. 表面工程, 1996, 9(4): 26-28.

[8] 梁 凯. 低氮含量单晶金刚石的制备研究[D]. 武汉: 武汉工程大学, 2022.

[9] HOINKIS M, WEBER E R, LANDSTRASS M I, et al. Paramagnetic nitrogen in chemical vapor deposition diamond thin films[J]. Applied Physics Letters, 1991, 59(15): 1870-1871.

[10] 牟恋希, 曾翰森, 朱肖华, 等. CVD人造金刚石核辐射探测器研究进展[J]. 人工晶体学报, 2022, 51(5): 814-829.

[11] 叶永权, 匡同春, 雷淑梅, 等. 金刚石(膜)的拉曼光谱表征技术进展[J]. 金刚石与磨料磨具工程, 2007, 27(5): 17-21.

[12] SECROUN A, BRINZA O, TARDIEU A, et al. Dislocation imaging for electronics application crystal selection[J]. Physica Status Solidi (a), 2007, 204(12): 4298-4304.

[13] 郭彦召. CVD金刚石辐照探测器的制备与性能研究[D]. 北京: 北京科技大学, 2018: 16-17.

[14] SUMIYA H, TODA N, NISHIBAYASHI Y, et al. Crystalline perfection of high purity synthetic diamond crystal[J]. Journal of Crystal Growth, 1997, 178(4): 485-494.

[15] 金国君, 徐 恺, 檀 珺, 等. 具有超低反射率的折射率渐变封装结构[J]. 光学学报, 2019, 39(2): 420-425.

[16] STEHL C, FISCHER M, GSELL S, et al. Efficiency of dislocation density reduction during heteroepitaxial growth of diamond for detector applications[J]. Applied Physics Letters, 2013, 103(15): 4824330.

[17] 屠菊萍, 刘金龙, 邵思武, 等. 高质量单晶金刚石的合成、结构与光学性能研究[J]. 光学学报, 2020, 40(6): 205-212.

[18] GUO Y Z, LIU J L, LIU J W, et al. Comparison of α particle detectors based on single-crystal diamond films grown in two types of gas atmospheres by microwave plasma-assisted chemical vapor deposition[J]. International Journal of Minerals, Metallurgy and Materials, 2020, 27(5): 703-712.

[19] KONNO Y, KANEKO J H, FUJITA F, et al. Improvement of crystal quality of a homoepitaxially grown diamond layer using plasma etching treatment for a diamond substrate[J]. Progress in Nuclear Science and Technology, 2011, 1: 255-258.

[20] RUAN J, KOBASHI K, CHOYKE W J. On the “band-a” emission and boron related luminescence in diamond[J]. Applied Physics Letters, 1992, 60(25): 3138-3140.

[21] TAKEUCHI D, WATANABE H, YAMANAKA S, et al. Origin of band-a emission in diamond thin films[J]. Physical Review B, 2001, 63(24): 245328.

[22] LANG A R. Causes of birefringence in diamond[J]. Nature, 1967, 213(5073): 248-251.

胡婷婷, 牟恋希, 王鹏, 屠菊萍, 刘金龙, 陈良贤, 张建军, 欧阳晓平, 李成明. 高纯低位错密度单晶金刚石的制备与表征[J]. 人工晶体学报, 2023, 52(11): 1931. HU Tingting, MU Lianxi, WANG Peng, TU Juping, LIU Jinlong, CHEN Liangxian, ZHANG Jianjun, OUYANG Xiaoping, LI Chengming. Preparation and Characterization of Single Crystal Diamond with High Purity and Low Dislocation Density[J]. Journal of Synthetic Crystals, 2023, 52(11): 1931.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!