核技术, 2024, 47 (1): 010605, 网络出版: 2024-03-07  

基于XRD内标法测定LiF-BeF2熔盐体系中UF3含量

Quantitative determination of UF3 in LiF-BeF2 molten salt system based on XRD internal standard method
徐士专 1,2陈健 1,3邹金钊 1,2王鹏 1,**曹长青 1林俊 1,2,*
作者单位
1 中国科学院上海应用物理研究所上海 201800
2 中国科学院大学北京 100049
3 广西师范大学桂林 541004
摘要
在氟化物熔盐相直接将UF6中转化为UF4是熔盐堆燃料盐的合成及重构的候选工艺之一。其中,UF3是该工艺过程的重要中间产物,其含量是开展工艺研究的关键参数之一。本文采用X射线衍射(X-ray Diffraction,XRD)内标法测量氟化物体系中的UF3含量,分析了不同组分的固态熔盐样品,建立了UF3含量的测量分析方法。首先以刚玉(α-Al2O3)为内标,获得了UF3在1.00~10.00 wt%含量范围时,LiF-BeF2-UF3熔盐的XRD峰高度内标曲线(R=0.986)和峰面积内标曲线(R=0.995)。然后应用这两条内标曲线测量已知含量的LiUF5和UF3固体混合样品,结果表明峰面积内标曲线具有更好的准确度,测量相对误差不大于8.7%。最后分别对快速冷却的LiF-BeF2-UF3固态熔盐样品和自然冷却的LiF-BeF2-UF3-LiUF5固态熔盐样品进行测量,测量结果的相对误差不大于5.4%。以上结果表明:本文建立的XRD内标法可以用于混合氟盐样品的UF3分析,并具有较好的测量精度和重复性。
Abstract
Background

The conversion of UF6, which is a primary nuclear product, to UF4 in fluoride molten salt phase is expected to be used in the preparation or reconstitution of nuclear fuel salt for molten salt reactors, thus simplifying the process of molten salt reactor fuel production. Determination of the concentration of the key intermediate UF3 plays an important role in obtaining the reaction parameters.

Purpose

This study aims to establish a method for measuring UF3 concentration in solid fluoride molten salts.

Methods

The X-ray diffraction (XRD) was employed to test the homemade standards and obtain the internal standard curve of UF3. Firstly, the α-Al2O3 was taken as the internal standard to obtain the XRD peak height internal standard curve (R=0.986) and peak area internal standard curve of LiF-BeF2-UF3 molten salt. Then, these two internal standard curves were applied to measuring the known content of LiUF5 and UF3 solid mixed samples to compare their accuracies. Finally, measurements were conducted on rapidly cooled LiF-BeF2-UF3 solid molten salt samples and naturally cooled LiF-BeF2-UF3-LiUF5 solid molten salt samples to evaluate the stability and accuracy of the curve, and the relative error was obtained.

Results

In the UF3 concentration range of 1.00~10.00 wt%, the correlation coefficient of the internal standard curve based on the peak area determined for of LiF-BeF2-UF3 molten salt is 0.995. Measuring results of solid mixed samples of LiUF5 and UF3 with known concentrations indicate that the peak area internal standard curve achieves better accuracy with a relative measurement error of no more than 8.7%. In addition, the results of the same content samples with different cooling methods confirm the good stability and accuracy of the proposed method with less than 5.4% relative standard deviation.

Conclusions

The established method can be used for the quantitative analysis of solid LiF-BeF2-UF3 and LiF-BeF2-UF3-LiUF5 molten salts with good measurement accuracy and repeatability.

熔盐反应堆是第四代堆中唯一的液态燃料堆,使用具有流动性的熔融氟化物(例如LiF-BeF2)作为载体盐。相比于固态燃料,液态燃料无须制作燃料元件1-3。熔盐堆中的铀燃料是直接以UF4的形式均匀溶解在载体盐中,为连续燃料处理和循环利用提供了基础4-5,可以达到很深的燃耗6-7、提高核燃料的利用率8。针对熔盐堆新燃料的制备和回堆燃料的重构,提出一种在LiF-BeF2(66.00∶34.00 mol%)盐中进行的熔盐堆燃料制备工艺,它以UF6为原料,借助于强还原性的中间体UF3在熔盐相中实现燃料盐的制备9-10。涉及的主要反应包括:以活性金属(如铀、钍、锆、铍)作为还原剂,在LiF-BeF2熔盐中将UF4还原为UF3(3UF4+U=4UF3);采用鼓泡的方式将UF6通入熔盐中,使UF6与UF3发生氧化还原反应生成UF4(UF6+2UF3=3UF4)。已知700 ℃时,在LiF-BeF2-ZrF4-UF4(65.00-29.17-5.00-0.83 mol%)熔盐中,采用过量金属Zr还原UF4获得的UF3浓度为8.00 wt%左右11。本文旨在建立一种10.00 wt%浓度范围内的UF3离线测量方法。

针对氟熔盐中U(III)浓度的测量,前人研究过氢还原法12-13、分光光度法12-15和伏安法13等。其中,氢还原法是先测量熔盐中总铀含量,再根据反应(UF4+1/2H2=UF3+HF)中的HF产量确定UF4含量,由此推算出熔盐中UF3的含量。这一方法的样品用量较多(50 g左右),而且可能存在的变价氟化物会干扰HF的定量16-17。分光光度法只能用于约500 mg·kg-1以下U(III)浓度的测量,因为浓度时紫外可见光谱将会出现饱和18-19。伏安法是通过测量熔盐样品中U(IV)/U(III)摩尔比值,结合能斯特方程和总铀浓度来计算U(III)的浓度1320;该法的样品用量也较大,而且其重现性较差。

本文采用X射线衍射(X-ray Diffraction,XRD)定量分析氟熔盐体系中的UF3含量。常见的XRD定量方法有绝热法21-23、Rietveld全谱拟合法24-25和外标法26-27、内标法28等。其中,绝热法需要调用标准衍射数据(Powder Diffraction File,PDF)卡片中的参比强度(Reference Intensity Ratio,RIR)。由于晶体结构差异、密度、研磨程度等影响,同一物质的RIR值往往有多个,影响了分析结果的准确度29。Rietveld全谱拟合法对样品XRD图谱的信噪比要求较高,对晶体结构模型的依赖较强,其误差受样品制备、辐射源、非晶态水平、精修步骤等诸多因素影响。对于多相复杂体系,其精修准确性更加难以保证30-33。外标法一般适用于同素异构的多晶型两相体系,对于多相体系需要测试其吸收系数34。内标法利用待测相i的某一衍射峰(通常为最强峰,能够减小背景扣除时引入的误差)的高度或面积Ii,与内标相s的某一衍射峰的高度或面积Is的比值,来确定待测相在复合相中的含量35;待测样品中可以有多个物相,也可以存在未知相和非晶相。赵丕琪等36以Al2O3为内标,评价了粉煤灰中莫来石、石英等晶态和非晶态XRD定量的准确性,结果表明:该方法具有良好的重现性,算术平均误差和已识别主相的标准误差约为1%。

本文以Al2O3为内标物质,研究了一种基于XRD内标法的氟熔盐中UF3含量定量方法。在建立UF3内标曲线(1.00~10.00 wt%含量范围)的基础上,检测了已知UF3含量的LiF-BeF2-UF3-LiUF5-Al2O3样品以及未知UF3含量的LiF-BeF2-UF3和LiF-BeF2-UF3-LiUF5样品,并对比了峰高比和峰面积比作为定量依据的准确度。

1 实验

1.1 原料

本实验使用的LiF-BeF2(66.00∶34.00 mol%)共晶盐(下称LiF-BeF2)通过H2-HF工艺自行制备37,LiF(99.9%)和BeF2(99.99%)分别购自上海阿拉丁生化科技有限公司和新疆富蕴恒盛铍业有限公司。α-Al2O3(99.99%,粒径9 μm)购自上海砥峰新材料公司。金属U块(99.99%)和UF4粉末(99.99%)购自中核北方核燃料元件有限公司。LiCl(99.9%)和ZnCl2(99.95%)购自国药集团化学试剂有限公司。UF3、LiUF5均为自行制备。

UF3的制备方法如下38:在钽坩埚中,将UF4和UH3(由金属铀多次氢化和脱氢得到)按照化学计量比3∶1混匀,置于缓慢的氩气气流中,在5 h内从427 ℃缓慢上升到627 ℃进行反应,获得棕黑色UF3粉末。

LiUF5的制备方法如下39:在石墨坩埚中将UF4-LiF-LiCl-ZnCl2(16.70∶16.70∶33.30∶33.30 mol%)混合熔盐在氩气气氛中,600 ℃下恒温3 h。以约5 ℃·h-1的速度冷却至350 ℃后,倒出坩埚中剩余氯盐,并将底部残留固体冷却至室温后,用去离子水冲洗,获得绿色LiUF5晶体。

1.2 XRD试样制备

研磨分筛(38 μm)LiF-BeF2共晶盐、UF3、LiUF5和α-Al2O3,确保粒径相对均匀。根据表1中各组分的重量分数,分别取适量LiF-BeF2、UF3、α-Al2O3粉末配制5个内标样品,每组样品总重约为0.55 g,分别在玛瑙研钵中研磨20 min,使其混合均匀;取混合粉末约0.1 g,置于载玻片中部凹槽中,轻压样品使其充满样品槽并用毛玻璃压平,用透明胶带将样品密封。

表 1. LiF-BeF2-UF3-Al2O3标准样品的配料表

Table 1. Composition of LiF-BeF2-UF3-Al2O3 standard sample (wt%)

标准样品Standard sampleUF3Li2BeF4Al2O3
B11.0099.0010.00
B23.0097.0010.00
B35.0095.0010.00
B47.0093.0010.00
B510.0090.0010.00

查看所有表

根据表2中各组分的重量分数,取适量LiF-BeF2、UF3、LiUF5、α-Al2O3配制成4组样品,采用前述XRD制样方式处理和装载,得到已知UF3含量的待分析样品。

表 2. LiF-BeF2-UF3-LiUF5-Al2O3样品的配料表

Table 2. Composition of LiF-BeF2-UF3-LiUF5-Al2O3 samples (wt%)

样品SampleUF3LiUF5Li2BeF4Al2O3
C11.000.0099.0010.00
C21.001.3497.6610.00
C31.006.7492.2610.00
C41.0013.4885.5210.00

查看所有表

向20 g熔融的LiF-BeF2熔盐中,投入5 g UF3和1 g金属铀,600 ℃恒温10 h,迅速冷却至室温,获得固态LiF-BeF2-UF3熔盐。取0.5 g固态熔盐研磨过筛(38 μm)后,添加0.05 g α-Al2O3粉末均匀混合,并采用前述样品装载方式,得到未知UF3含量的待测样品S1。

向20 g含10.00 wt% UF4的LiF-BeF2熔盐中投入1.5 g金属铀,550 ℃下恒温3 h,自然冷却至室温,获得固态LiF-BeF2-UF3-LiUF5熔盐40。采用前述样品处理和装载方式,得到未知UF3含量的待测样品S2。

1.3 测试仪器及方法

采用XRD(D8 Advance,Bruker)对样品进行表征。采用Cu靶,工作电压为40 kV、工作电流为40 mA;采用步进扫描方式,步长为0.02°,每步计数时间为1.5 s;采用初级狭缝1.0 mm,次级狭缝为5.0 mm;采用石墨单色器,扫描范围为2θ=10°~90°。每个样品分别测试3次,获取3组衍射谱图,并对衍射谱线分别进行背景扣除、K2峰值剥离及分峰拟合(采用pseudo-Voigt为峰型拟合函数,采用PDF overlays确定初始位置,初始宽度:半峰宽(Full Width at Half Maximum,FWHM)曲线)41

采用扫描电子显微镜(Scanning Electron Microscope,SEM;1530VP,LEO)观察原料粉末的微观形貌。

采用电感耦合等离子体发射光谱仪(Inductively Coupled Plasma Optical Emission Spectrometer,ICP-OES;Optima 8000,PerkinElmer)测量样品S1和S2中的总铀含量。样品预处理方法如下:准确称量测试样品约0.05 g加入聚四氟乙烯消解管中,加入2 mL浓HNO3、1 mL H2O2及2 mL水,置于石墨消解器(YKM-60,永乐康)中,于90 ℃下消解10 h;冷却后,加水稀释1 000倍。

2 结果与讨论

2.1 UF3和LiUF5的表征

UF3的光学显微镜结果显示,产物中无其他颜色的颗粒(UF4为绿色,金属铀为银白色),表明UF4和金属铀的反应是充分的且无反应物残留(图1(a))。UF3的XRD表征结果见图2(a),其衍射峰峰位与相对峰强与UF3(PDF#73-2388)非常吻合,且未观察到其他次级相,表明产物UF3具有高纯度(达99.5%)38。LiUF5的光学显微镜结果显示,其形貌为柱状晶体,平均直径和长度分别为0.43 mm和2.1 mm(图1(b))。LiUF5的XRD表征结果见图2(b),可以看到,衍射峰峰位、相对峰强与LiUF5(PDF#71-2135)吻合。

图 1. UF3粉末显微图片(a)和LiUF5晶体显微图片(b)

Fig. 1. Microscope images of UF3 powder (a) and LiUF5 crystal (b)

下载图片 查看所有图片

图 2. UF3粉末X射线衍射图谱(a)和LiUF5粉末X射线衍射图谱(b)

Fig. 2. XRD patterns of UF3 powder (a) and LiUF5 powder (b)

下载图片 查看所有图片

当衍射峰存在明显择优取向时,衍射强度会异常增高,从而影响XRD定量的准确性。样品颗粒的形状显著影响择优取向,球形颗粒最为理想,而针状、片状的择优取向较为明显42。在SEM下观察发现UF3的微观形态(图3(a))边角圆滑,近似椭球形,这有利于减少择优取向的影响。研磨后LiUF5晶体的微观形态(图3(b))呈片状,这种存在形态可能会引起测试结果的偏差,因此制备了含不同已知浓度LiUF5的样品,以考察其是否显著影响测试结果,见§2.3。

图 3. UF3 (a)和LiUF5 (b)的SEM图

Fig. 3. SEM images of UF3 (a) and LiUF5 (b)

下载图片 查看所有图片

2.2 内标曲线

图4为5个LiF-BeF2-UF3-Al2O3内标样品的XRD谱图。可以看到,UF3衍射峰强度与其在内标样品中的含量呈正相关。而α-Al2O3在内标样品中含量相同,其衍射峰的强度之间差异亦不明显。

图 4. LiF-BeF2-UF3-Al2O3标准试样X射线衍射图谱

Fig. 4. XRD patterns of LiF-BeF2-UF3-Al2O3 standard sample

下载图片 查看所有图片

UF3(111)峰为该物相的最强衍射峰,通过PDF卡片的对比和图4可知,该衍射峰的积分区域并无其他物相的衍射峰重叠。因此,本文中UF3的特征峰高度和面积Ii均由(111)峰图谱拟合获得。α-Al2O3(PDF#81-1667)的特征峰高度和面积Is由(116)峰(次强衍射峰)图谱拟合获得。之所以不选择α-Al2O3的最强衍射峰,是因为α-Al2O3(104)峰和LiUF5(521)峰重叠严重,二者的角度差值为∆2θ仅为0.064°;由图5可知,随着LiUF5含量增加,(521)峰逐渐增强,与(104)峰始终重叠。在对它们进行分峰拟合时,其结果会存在不确定性43

图 5. LiF-BeF2-UF3-LiUF5-Al2O3试样局部X射线衍射图谱

Fig. 5. Partial XRD patterns of LiF-BeF2-UF3-LiUF5-Al2O3 sample

下载图片 查看所有图片

根据分峰拟合结果,图4中UF3、α-Al2O3衍射峰的高度和面积见表3。以表3中UF3和Al2O3的峰高度、峰面积分别计算得到对应Ii /Is,并绘制出两个对应的内标曲线,如图6所示。其中,图6(a)为基于峰高比的内标曲线,其线性相关系数R为0.986;图6(b)为基于峰面积比的内标曲线,其线性相关系数R为0.995。由此可见,峰面积内标曲线的相关系数R更接近于1,这是由于峰面积作为衍射峰的积分强度,峰型宽化和噪声对其影响更小44

表 3. 内标法标准样品衍射峰高与面积

Table 3. Diffraction peak height and area of standard samples obtained using internal standard method

样品

Sample

UF3峰高度(Ri

UF3 peak height (Ri)

UF3峰面积(Ri

UF3 peak area (Ri)

Al2O3峰高度(Ri

Al2O3 peak height (Ri)

Al2O3峰面积(Ri

Al2O3 peak area (Ri)

B1.1929 (50)5 557 (384)1 350 (42)10 064 (213)
B1.21 235 (68)7 218 (412)1 915 (57)13 593 (356)
B1.3977 (45)6 192 (430)1 508 (35)10 778 (458)
B2.12 964 (70)17 735 (511)1 601 (58)11 498 (470)
B2.23 541 (86 )22 655 (716)1 995 (53)14 549 (515)
B2.32 484 (67)15 660 (523)1 431 (49)10 103 (462)
B3.14 692 (144)32 890 (1 115)1 822 (92)10 848 (737)
B3.22 858 (145)19 609 (1 026)1 049 (75)6 764 (582)
B3.34 888 (90)30 708 (659)1 915 (41)10 990 (365)
B4.14 439 (74)27 246 (536)1 050 (33)7 352 (289)
B4.23 802 (78)26 868 (647)872 (32)6 625 (257)
B4.36 689 (98)44 881 (1 139)1 648 (40)11 752 (333)
B5.15 639 (162)31 031 (1 094)926 (51)5 712 (344)
B5.26 758 (203)41 876 (1 333)1 251 (66)7 496 (452)
B5.36 750 (190)43 415 (1 387)1 182 (137)7 636 (727)

查看所有表

图 6. UF3与Al2O3峰值高度比值内标曲线(a),UF3与Al2O3峰面积比值内标曲线(b)

Fig. 6. Internal standard curves of UF3vs. Al2O3 peak height ratio (a) and UF3vs. Al2O3 peak area ratio (b)

下载图片 查看所有图片

表3可知,同一UF3含量的平行样品峰高度和峰面积存在着一定的波动,这可以归因于粉末样品的密实程度、均匀程度和基体效应等28。但是,由于内标物的存在,通过计算Ii/Is可以在很大程度上消除以上因素对定量分析带来的影响。衍射峰积分强度比Ii/Is与UF3浓度之间存在较好的线性关系。

2.3 已知含量的样品分析

为了定量分析LiUF5的存在对UF3含量测量准确度的影响,采用XRD对已知浓度的LiF-BeF2-UF3-LiUF5-Al2O3样品C2、C3、C4进行测试,结果见图7(a)。直观上,2θ为28.3°的LiUF5的(141)峰强度与其含量呈正相关;随着LiUF5含量的增加,UF3(111)峰的强度和形状未发生明显变化,Al2O3(116)衍射面的衍射峰也无明显不同(图7(b)和(c))。

图 7. LiF-BeF2-UF3-LiUF5-Al2O3试样X射线衍射图谱(a)和局部放大图(b, c)

Fig. 7. XRD pattern (a) and local magnifications (b, c) of LiF-BeF2-UF3-LiUF5-Al2O3 sample

下载图片 查看所有图片

样品C2、C3、C4的UF3(理论含量均为1.00 wt%)、Al2O3峰值高度和峰面积见表4。以表4中UF3和Al2O3的峰高度、峰面积计算得到对应Ii/Is,并代入内标曲线方程获得UF3含量,分别见表5表6。由表5可知,基于峰高度比定量的标准曲线,样品C2、C3、C4中UF3含量平均值分别为1.06 wt%、1.02 wt%、0.93 wt%,最大绝对误差为0.07 wt%。由表6可知,基于峰面积比定量的标准曲线,样品C2、C3、C4中UF3测量值分别为0.99 wt%、0.99 wt%、1.04 wt%,最大绝对误差为0.04 wt%。这一结果表明,基于峰面积比定量的结果误差更小,也未发现LiUF5的含量变化对UF3含量的测量产生明显影响。

表 4. 样品C2C3C4衍射峰高度与面积

Table 4. Diffraction peak height and area of standard samples C2, C3, and C4

样品

Sample

UF3峰高度(Ri

UF3 peak height (Ri)

UF3峰面积(Ri

UF3 peak area (Ri)

Al2O3峰高度(Ri

Al2O3 peak height (Ri)

Al2O3峰面积(Ri

Al2O3 peak area (Ri)

C2.1930 (40)5 553 (428)1 346 (77)9 789 (774)
C2.2897 (37)5 421 (444)1 410 (56)10 756 (882)
C2.31229 (54)7 737 (668)2 086 (48)14 279 (1 077)
C3.1804 (46)4 496 (291)1 268 (53)7 768 (712)
C3.2889 (65)5 145 (450)1 357 (44)9 345 (669)
C3.31 102 (48)6 271 (610)1 886 (68)12 036 (669)
C4.1741 (33)3 782 (347)1 378 (66)7 254 (774)
C4.2718 (48)3 885 (439)1 213 (54)6 686 (320)
C4.3699 (73)3 682 (462)1 217 (58)6 587 (653)

查看所有表

表 5. 样品C2C3C4衍射峰高度比值和对应的UF3含量计算值

Table 5. Diffraction peak height ratio and UF3 content of samples C2, C3, and C4

样品

Sample

峰高度比

Peak height ratio

含量

UF3 content / wt%

相对标准偏差

Relative standard deviation / %

C2.10.691.15
C2.20.641.06
C2.30.590.98
平均值C¯1 Average value C¯10.641.068.0
C3.10.580.97
C3.20.631.04
C3.30.631.05
平均值C¯2 Average value C¯20.611.024.4
C4.10.570.95
C4.20.590.98
C4.30.540.89
平均值C¯3 Average value C¯30.570.934.9

查看所有表

表 6. 样品C2C3C4衍射峰面积比值和对应的UF3含量计算值

Table 6. Diffraction peak area ratio and UF3 content of samples C2, C3, and C4

样品

Sample

峰面积比

Peak area ratio

含量

UF3 content / wt%

相对标准偏差

Relative standard deviation / %

C2.10.570.97
C2.20.500.95
C2.30.521.06
平均值C¯4 Average value C¯40.530.996.4
C3.10.520.98
C3.20.490.92
C3.30.581.08
平均值C¯5 Average value C¯50.530.998.7
C4.10.561.05
C4.20.581.09
C4.30.520.98
平均值C¯6 Average value C¯60.551.045.4

查看所有表

2.4 未知UF3含量的样品分析

测试试样S1、S2对应的XRD图谱见图8,样品S1中(111)和(116)峰的轮廓清晰可分辨,可通过分峰拟合获取其准确的峰强度和峰面积数据。样品S2中除了UF3和Al2O3的特征峰以外,可观察到明显LiUF5的特征峰;部分UF3和Al2O3的特征峰受到LiUF5影响峰型变得不规则,但(111)和(116)峰仍然清晰可辨,并无明显异常。

图 8. 试样S1、S2 X射线衍射图谱

Fig. 8. XRD patterns of test samples S1 and S2

下载图片 查看所有图片

试样S1、S2的UF3和α-Al2O3对应的峰强度、峰面积见表7,由此得到的UF3含量分别见表8表9。由表8表9可知,试样S1基于峰高度内标曲线和峰面积内标曲线的UF3含量测量值为3.29 wt%(RSD(Relative standard deviation)=5.4%)和2.87 wt%(RSD=1.1%)。根据ICP-OES测试结果,S1中的UF3含量应为2.76 wt%(RSD=1.20%)。与前面类似,基于峰面积比定量的结果的RSD更小,与OES测试结果一致性也更好。试样S2基于峰高比和峰面积比定量的UF3含量分别为3.80 wt%(RSD=4.1%)和4.13 wt%(RSD=2.4%),可见基于峰面积比定量的结果的RSD也更小。

表 7. 测试样S1S2衍射峰高度与面积

Table 7. Diffraction peak height and area of test samples S1 and S2

样品

Sample

UF3峰高度(Ri

UF3 peak height

(Ri)

UF3峰面积(Ri

UF3 peak area

(Ri)

Al2O3峰高度(Ri

Al2O3 peak height

(Ri)

Al2O3峰面积(Ri

Al2O3 peak area

(Ri)

S1.12 158 (66)16 189 (619)1 110 (35)10 263 (458)
S1.22 540 (74)19 117 (715)1 270 (61)11 961 (519)
S1.32 547 (80)18 533 (703)1 410 (42)11 852 (490)
S2.13 094 (91)25 340 (752)1 369 (55)10 768 (612)
S2.23 214 (89)23 945 (653)1 534 (39)10 594 (635)
S2.32 645 (75)21 676 (686)1 178 (47)9 643 (421)

查看所有表

表 8. 测试样S1S2衍射峰高度比值和对应的UF3含量计算值

Table 8. Diffraction peak height ratio and UF3 content of test samples S1 and S2

样品

Sample

峰高度比

Peak height ratio

含量

UF3 content / wt%

相对标准偏差

RSD / %

S1.11.943.34
S1.22.003.45
S1.31.803.10

平均值S¯1

Average value S¯1

1.913.295.4
S2.12.263.90
S2.22.103.62
S2.32.253.88

平均值S¯2

Average value S¯2

2.203.804.1

查看所有表

表 9. 测试样S1S2衍射峰面积比值对应的和UF3含量计算值

Table 9. Diffraction peak area ratio and UF3 content of test samples S1 and S2

样品

Sample

峰面积比

Peak area ratio

含量

UF3 content / wt%

相对标准偏差

RSD / %

S1.11.582.86
S1.21.602.90
S1.31.562.83

平均值S¯3

Average value S¯3

1.582.871.1
S2.12.354.24
S2.22.264.08
S2.32.254.06

平均值S¯4

Average value S¯4

2.294.132.4

查看所有表

以上实验结果表明,选择峰面积比作为定量依据,该方法可以用于测量快速冷却的固态LiF-BeF2-UF3熔盐和自然冷却的固态LiF-BeF2-UF3-LiUF5熔盐中的UF3含量。

本文虽然采用筛分方式优化了粉末粒径,但SEM结果(图3(a))表明粉末粒径并不均一。基于上述事实,在制备平行样品时,各样品粒径大小和分布必然存在差异,从而造成了测试结果相对误差稍有偏高。这种由粒径大小和分布影响分析方法精密度的现象与前期文献报道相符45-46。后续工作将采用多种规格筛网进行梯度筛分来优化样品粒径大小和分布,并开展粒径大小和分布对测试结果影响的研究,为提高该方法的精密度提供依据。

相较于过氢还原法12-13,该方法无需额外的高温反应和HF采集检测设备,简化了检测流程和提高了检测效率。相较于分光光度法12-15,该方法显著拓宽展了UF3浓度检测范围(从500 mg·kg-1以下拓展至10.00 wt%之内)。相较于伏安法,该方法具有较高的重复性。总而言之,该方法能克服现有分析方法的一些局限性,为熔盐中UF3含量的实际检测提供了重要基础。

3 结语

针对固态混合氟熔盐样品中的UF3,建立了XRD内标法定量分析的流程。通过分峰拟合与数据处理,分别得到了基于UF3峰强度和峰面积的内标曲线。其中,基于衍射峰面积的Ii/Is与UF3含量之间存在更好的线性关系。

对已知含量的样品C2、C3、C4,基于峰高度内标曲线的测量结果与理论值偏差0.02~0.07 wt%;峰面积内标曲线获得的结果偏差更小,为0.01~0.04 wt%,这也表明此时LiUF5的含量变化对UF3的测量结果的影响明显很小。

基于峰面积内标曲线进行定量,快速冷却的LiF-BeF2-UF3试样S1的UF3测量值与OES测量值基本一致,自然冷却的LiF-BeF2-UF3-LiUF5试样S2的UF3测量结果的相对偏差也更低。XRD内标法可以用于测量混合氟溶盐中1.00~10.00 wt%浓度范围的UF3

需要指出的是,本文未深入研究样品粒径大小和分布对测试结果的影响。后续工作将系统地开展相关研究,优化熔盐体系中XRD内标法的精密度。

参考文献

[1] Yang X, Guo L H, Zhang F, et al. Microstructure and mechanical properties evolution of thermal-treated SiC layer with fine grain size in TRISO particles[J]. Materials Science and Engineering: B, 2023, 287: 116096.

[2] Guo L H, Zhang F, Lu L Y, et al. Preparation of the highly dense ceramic-metal fuel particle with fine-grained tungsten layer by chemical vapor deposition for the application in nuclear thermal propulsion[J]. Tungsten, 2022, 4(1): 1-9.

[3] Yang X, Zhang F, Guo M S, et al. Preparation of SiC layer with sub-micro grain structure in TRISO particles by spouted bed CVD[J]. Journal of the European Ceramic Society, 2019, 39(9): 2839-2845.

[4] Merle-LucotteE, HeuerD, AllibertM, et al. Introduction to the physics of molten salt reactors[C]//Materials Issues for Generation IV Systems. Dordrecht: Springer, 2008: 501–521. DOI:10.1007/978-1-4020-8422-5_25.

[5] Serp J, Allibert M, Beneš O, et al. The molten salt reactor (MSR) in generation IV: overview and perspectives[J]. Progress in Nuclear Energy, 2014, 77: 308-319.

[6] 虞凯程, 程懋松, 戴志敏. 基于确定论方法的液态燃料熔盐堆燃料管理程序开发及验证[J]. 核技术, 2021, 44(4): 040603.

    YU Kaicheng, CHENG Maosong, DAI Zhimin. Development and verification of fuel management code for liquid-fueled molten salt reactor based on deterministic code system[J]. Nuclear Techniques, 2021, 44(4): 040603.

[7] 孙国民, 程懋松, 戴志敏. 小型模块化熔盐快堆燃料管理初步分析[J]. 核技术, 2016, 39(7): 070603.

    SUN Guomin, CHENG Maosong, DAI Zhimin. Preliminary analysis of fuel management for a small modular molten salt fast reactor[J]. Nuclear Techniques, 2016, 39(7): 070603.

[8] 江绵恒, 徐洪杰, 戴志敏. 未来先进核裂变能: TMSR核能系统[J]. 中国科学院院刊, 2012, 27(3): 366-374.

    JIANG Mianheng, XU Hongjie, DAI Zhimin. Advanced fission energy program - TMSR nuclear energy system[J]. Bulletin of the Chinese Academy of Sciences, 2012, 27(3): 366-374.

[9] 王鹏, 郑海洋, 佘长峰, 等. 一种三氟化铀的电沉积方法: CN108179432B[P]. 2019-09-03.

    WANGPeng, ZHENGHaiyang, SHEChangfeng, et al. Electro-deposition method for uranium trifluoride: CN108179432B[P]. 2019-09-03.

[10] 王鹏, 孙理鑫, 曹长青, 等. 一种熔盐堆燃料重构的方法: CN109637682B[P]. 2020-09-04. 10.1016/b978-0-08-102571-0.00007-0

    WANGPeng, SUNLixin, CAOChangqing, et al. Method for reconstructing molten salt reactor fuel: CN109637682B[P]. 2020-09-04. 10.1016/b978-0-08-102571-0.00007-0

[11] BriggsR B. Molten-salt reactor program semianual progress report for period ending (ORNL-3626)[R]. United States: Oak Ridge National Laboratory, 1964. 10.2172/4106714

[12] RosenthalM W, BriggsR B, KastenP R. Molten-salt reactor program semianual progress report for period ending (ORNL-4119)[R]. United States: Oak Ridge National Laboratory, 1967.

[13] RosenthalM W, BriggsR B, KastenP R. Molten-salt reactor program semianual progress report for period ending (ORNL-4396)[R]. United States: Oak Ridge National Laboratory, 1969. 10.2172/4780471

[14] BriggsR B. Molten-salt reactor program semianual progress report for period ending (ORNL-3872)[R]. United States: Oak Ridge National Laboratory, 1965. 10.2172/4106714

[15] BriggsR B. Molten-salt reactor program semianual progress report for period ending(ORNL-4037)[R]. United States: Oak Ridge National Laboratory, 1967.

[16] RosenthaM W, BriggsR B, Kasten P R Molten-salt reactor program semianual progress report for period ending (ORNL-4344)[R]. United States: Oak Ridge National Laboratory, 1969. 10.2172/4780471

[17] RosenthalM W, BriggsR B, KastenP R. Molten-salt reactor program semianual progress report for period ending(ORNL-4191)[R]. United States: Oak Ridge National Laboratory, 1967.

[18] KelleyM T, SusanoC D, FisherD J. Analytical chemistry division annual progress report for period ending (ORNL-3750)[R]. United States: Oak Ridge National Laboratory, 1965.

[19] Young J P, Mamantov G, Whiting F L. Simultaneous voltammetric generation of uranium(III) and spectrophotometric observation of the uranium(III)-uranium(IV) system in molten lithium fluoride-beryllum fluoride-zirconium fluoride[J]. The Journal of Physical Chemistry, 1967, 71(3): 782-783.

[20] Peng H, Shen M, Zuo Y, et al. Electrochemical technique for detecting the formation of uranium-containing precipitates in molten fluorides[J]. Electrochimica Acta, 2016, 222: 1528-1537.

[21] Chung F H. Quantitative interpretation of X-ray diffraction patterns of mixtures. II. Adiabatic principle of X-ray diffraction analysis of mixtures[J]. Journal of Applied Crystallography, 1974, 7(6): 526-531.

[22] Hillier S. Accurate quantitative analysis of clay and other minerals in sandstones by XRD: comparison of a Rietveld and a reference intensity ratio (RIR) method and the importance of sample preparation[J]. Clay Minerals, 2000, 35(1): 291-302.

[23] Huang Q Y, Wang C J, Shan Q A. Quantitative deviation of nanocrystals using the RIR method in X-ray diffraction (XRD)[J]. Nanomaterials, 2022, 12(14): 2320.

[24] Post J E, Bish D L. Rietveld refinement of crystal structures using powder X-ray diffraction data[J]. Reviews in Mineralogy and Geochemistry, 1989, 20(1): 277-308.

[25] Hadjadj K, Chihi S. Rietveld refinement based quantitative phase analysis (QPA) of Ouargla (part of grand erg oriental in Algeria) dunes sand[J]. Silicon, 2022, 14(2): 429-437.

[26] Goehner R P. X-ray diffraction quantitative analysis using intensity ratios and external standards[J]. Advances in X-Ray Analysis, 1981, 25: 309-313.

[27] SpießL, TeichertG, SchwarzerR, et al. Moderne Röntgenbeugung: Röntgendiffraktometrie für Materialwissenschaftler, Physiker und Chemiker[M]. Wiesbaden: Springer Fachmedien Wiesbaden, 2019. DOI:10.1007/978-3-8348-8232-5.

[28] Chung F H. Quantitative interpretation of X-ray diffraction patterns of mixtures. I. Matrix-flushing method for quantitative multicomponent analysis[J]. Journal of Applied Crystallography, 1974, 7(6): 519-525.

[29] 黄继武, 李周. 多晶材料X射线衍射: 实验原理、方法与应用[M]. 北京: 冶金工业出版社, 2012.

    HUANGJiwu, LIZhou. X-ray diffraction of polycrystalline materials: experimental principle, method and application[M]. Beijing: Metallurgical Industry Press, 2012.

[30] Aranda M A G, De la Torre A G, Leon-Reina L. Rietveld quantitative phase analysis of OPC clinkers, cements and hydration products[J]. Reviews in Mineralogy and Geochemistry, 2012, 74(1): 169-209.

[31] De la Torre A G, Aranda M A G. Accuracy in Rietveld quantitative phase analysis of Portland cements[J]. Journal of Applied Crystallography, 2003, 36(5): 1169-1176.

[32] Le SaoutG, FüllmannT, KocabaV, et al. Quantitative study of cementitious materials by X-ray diffraction/Rietveld analysis using an external standard[C]. 12th International Congress on the Chemistry of Cement, Montréal, Canada. 2007.

[33] Madsen I C, Scarlett N V Y, Cranswick L M D, et al. Outcomes of the international union of crystallography commission on powder diffraction round robin on quantitative phase analysis: samples 1a to 1h[J]. Journal of Applied Crystallography, 2001, 34(4): 409-426.

[34] Brime C. The accuracy of X-ray diffraction methods for determining mineral mixtures[J]. Mineralogical Magazine, 1985, 49(353): 531-538.

[35] Alexander L, Klug H P. Basic aspects of X-ray absorption in quantitative diffraction analysis of powder mixtures[J]. Analytical Chemistry, 1948, 20(10): 886-889.

[36] Zhao P Q, Liu X P, De La Torre A G, et al. Assessment of the quantitative accuracy of Rietveld/XRD analysis of crystalline and amorphous phases in fly ash[J]. Analytical Methods, 2017, 9(16): 2415-2424.

[37] ShafferJ. Preparation and handling of salt mixtures for the molten salt reactor experiment[R]. United States: Oak Ridge National Laboratory, 1971. 10.2172/4074869

[38] Cordfunke E H P, Ouweltjes W. Standard enthalpies of formation of uranium compounds VII. UF3 and UF4 (by solution calorimetry)[J]. The Journal of Chemical Thermodynamics, 1981, 13(2): 193-197.

[39] Cousson A, Pages M, Cousseins J C, et al. Flux growth of flourides of lithium and thorium or uranium[J]. Journal of Crystal Growth, 1977, 40(1): 157-160.

[40] Gibilaro M, Massot L, Chamelot P. A way to limit the corrosion in the Molten Salt Reactor concept: the salt redox potential control[J]. Electrochimica Acta, 2015, 160: 209-213.

[41] Walenta G, Füllmann T. Advances in quantitative XRD analysis for clinker, cements, and cementitious additions[J]. Powder Diffraction, 2004, 19(1): 40-44.

[42] Kleeberg R, Monecke T, Hillier S. Preferred orientation of mineral grains in sample mounts for quantitative XRD measurements: how random are powder samples?[J]. Clays and Clay Minerals, 2008, 56(4): 404-415.

[43] 马礼敦. X射线粉末衍射数据的校正[J]. 上海计量测试, 2006, 33(3): 10-16.

    MA Lidun. Calibration of X-ray powder diffraction data[J]. Shanghai Measurement and Testing, 2006, 33(3): 10-16.

[44] 马礼敦. 近代X射线多晶体衍射: 实验技术与数据分析[M]. 北京: 化学工业出版社, 2004.

    MALidun. Modern X-ray polycrystalline diffraction: experimental techniques and data analysis[M]. Beijing: Chemical Industry Press, 2004.

[45] 乔柱, 郑建明, 宋见峰, 等. Si内标-X射线衍射法定量测定铁矿中Fe3O4、Fe2O3和SiO2[J]. 中国无机分析化学, 2023, 13(5): 463-468.

    QIAO Zhu, ZHENG Jianming, SONG Jianfeng, et al. Quantitative determination of Fe3O4, Fe2O3 and SiO2 in iron ore by Si internal standard-X-ray diffraction method[J]. Chinese Journal of Inorganic Analytical Chemistry, 2023, 13(5): 463-468.

[46] Brindley G W. XLV. The effect of grain or particle Size on X-ray reflections from mixed powders and alloys, considered in relation to the quantitative determination of crystalline substances by X-ray methods[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1945, 36(256): 347-369.

徐士专, 陈健, 邹金钊, 王鹏, 曹长青, 林俊. 基于XRD内标法测定LiF-BeF2熔盐体系中UF3含量[J]. 核技术, 2024, 47(1): 010605. Shizhuan XU, Jian CHEN, Jinzhao ZOU, Peng WANG, Changqing CAO, Jun LIN. Quantitative determination of UF3 in LiF-BeF2 molten salt system based on XRD internal standard method[J]. NUCLEAR TECHNIQUES, 2024, 47(1): 010605.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!