光谱学与光谱分析, 2020, 40 (7): 2164, 网络出版: 2020-12-05  

“外蒙料”绿松石的宝石学特征研究

Study on Gemology Characteristics of the Turquoise from Mongolia
作者单位
1 中国地质大学(武汉)珠宝学院, 湖北 武汉 430074
2 深圳技术大学创意设计学院, 广东 深圳 518118
3 上海建桥学院珠宝学院, 上海 201306
摘要
近期市场上出现了一种外形特殊的绿松石, 体色多呈现浓度不同的蓝绿色, 大部分表面都有大小不等的白色——浅蓝白色斑块和斑点, 斑块界限模糊, 部分品种表面有类似流纹的结构, 外表与压制绿松石极为相似, 这种绿松石原料主要产自于蒙古, 市场上俗称 “外蒙料”。 采用常规宝石学测试仪器, X射线荧光光谱、 红外吸收光谱、 激光拉曼光谱和X射线粉晶衍射等测试方法对这类“外蒙料”绿松石的宝石学性质、 化学成分及矿物组成等进行了较为详细的研究分析。 研究结果表明: “外蒙料”绿松石样品整体外观呈浅蓝绿至深蓝绿色, 颜色分布不均匀, 表面常见白色或浅蓝白色分布不均一的斑块或斑点, 内部常含有石英、 长石、 伊利石还有黄铁矿。 其折射率约为1.60~1.62, 相对密度约为2.43~2.76, 低于我国湖北和安徽的绿松石。 在长波紫外光下, 大部分样品可见较微弱的蓝白色荧光, 在短波紫外光下, 荧光为惰性。 “外蒙料”的主要化学成分均偏离绿松石理论化学成分值, w(Al2O3)在26.75%~30.30%之间, w(P2O5)在32.54%~36.40%之间, w(CuO)在6.99%~10.73%之间, w(FeO)在1.73%~4.39%之间, w(ZnO)在0.35%~2.93%之间, 属于绿松石——锌绿松石类质同像系列靠近绿松石的端元, 其中普遍含有一定量的SiO2, 质量分数可达2.38%~8.87%, 这一特点与国内其他产地绿松石几乎不含或含有极微量的SiO2不同。 X射线粉晶衍射及红外吸收光谱显示, “外蒙料”中不均匀分布的颜色斑块的主要组成矿物均为绿松石, 且整体未经优化处理, 为天然绿松石。 红外吸收光谱显示绿松石“外蒙料”的红外吸收光谱为结晶水、 羟基水及磷酸根基团的振动光谱, 与天然绿松石的红外吸收光谱特征一致。 “外蒙料”绿松石中不同透明度及颜色的杂质矿物的激光拉曼光谱测试分析表明该绿松石中所含有的白色不透明杂质矿物为钠长石, 白色半透明杂质矿物为石英, 黄铜色具有金属光泽的杂质矿物为黄铁矿。
Abstract
Recently, one kind of turquoise with special appearance appears in the market. Their color is mostly pale blue and bluish green. Most of these materials are variegated with white or light blue-green plaques, whose boundaries are blurred. Some samples have similar flow structure on the surface, and their appearance is very similar to that of pressed turquoise. The raw material of the turquoise is mainly from Mongolia. The conventional gemological method, X-ray Fluorescence Spectrometer, Laser Raman Spectrometer and X-ray Power Diffraction were applied to the Mongolia turquoises in order to clarify their gemological properties, chemical and mineral composition in detail. The results show that the overall appearance of Mongolia turquoise is blue-green to deep blue-green with uneven distribution of color and uneven plaques on the surface. It often contains impurities such as quartz, pyrite, illite, feldspar and limonite etc. The refractive index of the turquoise in this area ranges from 1.60 to 1.62 (spot method), the relative density ranges from 2.43 to 2.76, and the relative density of the Mongolia turquoise is lower than that occurred in Hubei and Anhui. The samples fluoresce a weak ultraviolet to blue light glow under LWUV, with an inert reaction to SWUV. Weak ultraviolet light to blue fluorescence was observed in most samples under long-wavelength ultraviolet light, and fluorescence was inert under short-wavelength ultraviolet light. The main chemical composition of the Mongolia turquoise sample deviates from the theoretical chemical composition of turquoise, w (Al2O3) ranges from 26.75% to 30.30%, w (P2O5) ranges from 32.54% to 36.40%, w (CuO) ranges from 6.99% to 10.73%, w (FeO) ranges from 1.73% to 4.39%, w (ZnO) ranges from 0.35% to 2.93%. There is a certain amount of SiO2 in Mongolia turquoise samples, and the mass fraction can reach 2.38%~8.87%. This characteristic is different from that of other domestic turquoise areas, which contain nearly no or very trace SiO2. X-ray powder diffraction and infrared absorption spectra show that the main components of the uneven color plaques of Mongolia turquoise are turquoise, and they are natural and not optimised. Infrared absorption spectra show the vibrational spectra of crystal water, hydroxyl water and phosphate groups, which are consistent with those of natural turquoise. The laser Raman spectroscopy analysis of minerals with different transparency and color in Mongolia Turquoise show that the white opaque impurity minerals in the turquoise are sodium feldspar, white translucent impurity minerals are quartz, and brass with metallic lustre minerals are pyrite.
参考文献

[1] Cialla D, Mrz A, Bhme R, et al. Surface-enhanced Raman spectroscopy (SERS): progress and trends[J]. Analytical and Bioanalytical Chemistry, 2012, 403(1): 27-54.

[2] Zhang Y, Zhao S, Zheng J, et al. Surface-enhanced Raman spectroscopy (SERS) combined techniques for high-performance detection and characterization[J]. TrAC Trends in Analytical Chemistry, 2017, 90: 1-13.

[3] Craig A P, Franca A S, Irudayaraj J. Surface-enhanced Raman spectroscopy applied to food safety[J]. Annual Review of Food Science and Technology, 2013, 4(1): 369-380.

[4] Zhu Q, Cao Y, Cao Y, et al. Rapid on-site TLC-SERS detection of four antidiabetes drugs used as adulterants in botanical dietary supplements[J]. Analytical and Bioanalytical Chemistry, 2014, 406(7): 1877-1884.

[5] Zheng J, He L. Surface-enhanced Raman spectroscopy for the chemical analysis of food[J]. Comprehensive Reviews in Food Science and Food Safety, 2014, 13(3): 317-328.

[6] Jin Y, Ma P, Liang F, et al. Determination of malachite green in environmental water using cloud point extraction coupled with surface-enhanced Raman scattering[J]. Analytical Methods, 2013, 5(20): 5609-5614.

[7] Liu C, Zhang X, Li L, et al. Silver nanoparticle aggregates on metal fibers for solid phase microextraction-surface enhanced Raman spectroscopy detection of polycyclic aromatic hydrocarbons[J]. Analyst, 2015, 140(13): 4668-4675.

[8] Wang W, Xu M, Guo Q, et al. Rapid separation and on-line detection by coupling high performance liquid chromatography with surface-enhanced Raman spectroscopy[J]. RSC Advances, 2015, 5(59): 47640-47646.

[9] Pang S, Yang T, He L. Review of surface enhanced Raman spectroscopic (SERS) detection of synthetic chemical pesticides[J]. TrAC Trends in Analytical Chemistry, 2016, 85: 73-82.

[10] Cho I H, Bhandari P, Patel P, et al. Membrane filter-assisted surface enhanced Raman spectroscopy for the rapid detection of E. coli O157∶H7 in ground beef[J]. Biosensors and Bioelectronics, 2015, 64: 171-176.

[11] Li M, Banerjee S R, Zheng C, et al. Ultrahigh affinity Raman probe for targeted live cell imaging of prostate cancer[J]. Chemical Science, 2016, 7(11): 6779-6785.

[12] Desmoulière A, Chaponnier C, Gabbiani G. Tissue repair, contraction, and the myofibroblast[J]. Wound Repair and Regeneration, 2005, 13(1): 7-12.

[13] Goodson W H, Hunt T K. Wound healing and the diabetic patient[J]. Surgery, Gynecology & Obstetrics, 1979, 149(4): 600-608.

[14] Greenhalgh D G. Wound healing and diabetes mellitus[J]. Clinics in Plastic Surgery, 2003, 30(1): 37-45.

[15] Franzén L E, Roberg K. Impaired connective tissue repair in streptozotocin-induced diabetes shows ultrastructural signs of impaired contraction[J]. Journal of Surgical Research, 1995, 58(4): 407-414.

[16] Esmaeelinejad M, Bayat M, Darbandi H, et al. The effects of low-level laser irradiation on cellular viability and proliferation of human skin fibroblasts cultured in high glucose mediums[J]. Lasers in Medical Science, 2014, 29(1): 121-129.

[17] Grossman N, Schneid N, Reuveni H, et al. 780 nm low power diode laser irradiation stimulates proliferation of keratinocyte cultures: involvement of reactive oxygen species[J]. Lasers in Surgery and Medicine, 1998, 22(4): 212-218.

[18] Almeida-Lopes L, Rigau J, Zngaro R A, et al. Comparison of the low level laser therapy effects on cultured human gingival fibroblasts proliferation using different irradiance and same fluence[J]. Lasers in Surgery and Medicine, 2001, 29(2): 179-184.

[19] Hu W P, Wang J J, Yu C L, et al. Helium-neon laser irradiation stimulates cell proliferation through photostimulatory effects in mitochondria[J]. Journal of Investigative Dermatology, 2007, 127(8): 2048-2057.

[20] Igarashi A, Okochi H, Bradham D M, et al. Regulation of connective tissue growth factor gene expression in human skin fibroblasts and during wound repair[J]. Molecular Biology of the Cell, 1993, 4(6): 637-645.

[21] Vogt A, Rancan F, Ahlberg S, et al. Interaction of dermatologically relevant nanoparticles with skin cells and skin[J]. Beilstein Journal of Nanotechnology, 2014, 5: 2363-2373.

[22] Kaminaka S, Ito T, Yamazaki H, et al. Near-infrared multichannel Raman spectroscopy toward real-time in vivo cancer diagnosis[J]. Journal of Raman Spectroscopy, 2002, 33(7): 498-502.

[23] 李栋, 王元秀, 矫强, 等. 低强度He-Ne激光照射对小鼠皮肤成纤维细胞、胸腺细胞和骨髓细胞的影响[J]. 中国激光医学杂志, 2005, 14(4): 245-248.

    Li D, Wang Y X, Jiao Q, et al. Effects of low intensity He-Ne laser irradiation on mouse skin fbroblasts, thymocytes and bone marrow cells[J]. Chinese Journal of Laser Medicine & Surgery, 2005, 14(4): 245-248.

[24] 吴迪. 点阵激光辅助自体成纤维细胞经皮递送的初步研究[J]. 中国激光医学杂志, 2016, 15(5): 6-9.

    Wu D. Primary study of dot matrix laser assisted autogenous fibroblasts transdermal delivery [J]. Chinese Journal of Laser Medicine & Surgery, 2016, 15(5): 6-9.

[25] Leroy M, Labbé J F, Ouellet M, et al. A comparative study between human skin substitutes and normal human skin using Raman microspectroscopy[J]. Acta Biomaterialia, 2014, 10(6): 2703-2711.

[26] Piredda P, Berning M, Boukamp P, et al. Subcellular Raman microspectroscopy imaging of nucleic acids and tryptophan for distinction of normal human skin cells and tumorigenic keratinocytes[J]. Analytical Chemistry, 2015, 87(13): 6778-6785.

[27] Li L, Liu S, Chen Z, et al. Remote detection of the surface-enhanced Raman spectrum with the optical fiber nanoprobe[J]. Optics & Spectroscopy, 2014, 116(4): 575-578.

[28] Pikov V, Siegel P H. Thermal monitoring: Raman spectrometer system for remote measurement of cellular temperature on a microscopic scale[J]. IEEE Engineering in Medicine and Biology Magazine, 2010, 29(1): 63-71.

[29] Chen Z, Dai Z, Chen N, et al. Gold nanoparticles-modified tapered fiber nanoprobe for remote SERS detection[J]. IEEE Photonics Technology Letters, 2014, 26(8): 777-780.

[30] Polwart E, Keir R L, Davidson C M, et al. Novel SERS-active optical fibers prepared by the immobilization of silver colloidal particles[J]. Applied Spectroscopy, 2000, 54(4): 522-527.

[31] Kottmann J P, Martin O J F, Smith D R, et al. Plasmon resonances of silver nanowires with a nonregular cross section[J]. Physical Review B, 2001, 64(23): 235402.

[32] Daniels J K, Chumanov G. Nanoparticle-mirror sandwich substrates for surface-enhanced Raman scattering[J]. The Journal of Physical Chemistry B, 2005, 109(38): 17936-17942.

[33] Yonzon C R, Haynes C L, Zhang X, et al. A glucose biosensor based on surface-enhanced Raman scattering: improved partition layer, temporal stability, reversibility, and resistance to serum protein interference[J]. Analytical Chemistry, 2004, 76(1): 78-85.

[34] McNichols R J, Cote G L. Optical glucose sensing in biological fluids: an overview[J]. Journal of Biomedical Optics, 2000, 5(1): 5-16.

[35] Yan B, Li B, Wen Z, et al. Label-free blood serum detection by using surface-enhanced Raman spectroscopy and support vector machine for the preoperative diagnosis of parotid gland tumors[J]. BMC Cancer, 2015, 15(1): 650.

[36] Tang H W, Yang X B, Kirkham J, et al. Probing intrinsic and extrinsic components in single osteosarcoma cells by near-infrared surface-enhanced Raman scattering[J]. Analytical Chemistry, 2007, 79(10): 3646-3653.

[37] Cheng W T, Liu M T, Liu H N, et al. Micro-Raman spectroscopy used to identify and grade human skin pilomatrixoma[J]. Microscopy Research and Technique, 2005, 68(2): 75-79.

[38] Movasaghi Z, Rehman S, Rehman I U. Raman spectroscopy of biological tissues[J]. Applied Spectroscopy Reviews, 2007, 42(5): 493-541.

[39] Leroy M, Labbé J F, Ouellet M, et al. A comparative study between human skin substitutes and normal human skin using Raman microspectroscopy[J]. Acta Biomaterialia, 2014, 10(6): 2703-2711.

[40] Sigurdsson S, Philipsen P A, Hansen L K, et al. Detection of skin cancer by classification of Raman spectra[J]. IEEE Transactions on Biomedical Engineering, 2004, 51(10): 1784-1793.

[41] Bodanese B, Silveira L, Jr, Albertini R, et al. Differentiating normal and basal cell carcinoma human skin tissues in vitro using dispersive Raman spectroscopy: a comparison between principal components analysis and simplified biochemical models[J]. Photomedicine and Laser Surgery, 2010, 28(S1): S119-S127.

[42] Barry B W, Edwards H G M, Williams A C. Fourier transform Raman and infrared vibrational study of human skin: assignment of spectral bands[J]. Journal of Raman Spectroscopy, 1992, 23(11): 641-645.

[43] Caspers P J, Bruining H A, Puppels G J, et al. In vivo confocal Raman microspectroscopy of the skin: noninvasive determination of molecular concentration profiles[J]. Journal of Investigative Dermatology, 2001, 116(3): 434-442.

[44] Tang H, Yao H, Wang G, et al. NIR Raman spectroscopic investigation of single mitochondria trapped by optical tweezers[J]. Optics Express, 2007, 15(20): 12708-12716.

陈全莉, 王海涛, 刘衔宇, 秦晨, 包德清. “外蒙料”绿松石的宝石学特征研究[J]. 光谱学与光谱分析, 2020, 40(7): 2164. CHEN Quan-li, WANG Hai-tao, LIU Xian-yu, QIN Chen, BAO De-qing. Study on Gemology Characteristics of the Turquoise from Mongolia[J]. Spectroscopy and Spectral Analysis, 2020, 40(7): 2164.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!