光子学报, 2019, 48 (10): 1005001, 网络出版: 2019-11-14  

基于铋纳米颗粒的自由沉降法制作X射线吸收光栅

Fabrication of X-ray Absorption Gratings by Free Settling of Bismuth Nanoparticles
作者单位
深圳大学 物理与光电工程学院 光电子器件与系统(教育部/广东省)重点实验室,广东 深圳 518060
摘要
利用深反应离子刻蚀技术或湿法腐蚀在硅上制作光栅结构,将与光栅浸润的液体作为载体携带铋纳米颗粒进入光栅结构内,形成致密排列,从而制作出X射线吸收光栅.致密地填充了周期为42 μm、刻蚀深度为150 μm的光栅结构,比较了其与微铸造法制作的铋块体吸收光栅的X射线吸收性能,并通过填充周期为24 μm和6 μm的光栅结构,研究了光栅周期与填充致密性之间的关系.扫描电镜测试结果显示自由沉降法可有效制作较大周期光栅,但对周期为6 μm光栅结构填充的致密性不佳。分析结果表明,对于小周期吸收光栅,需筛选所用填充颗粒,以保证颗粒粒径远小于光栅槽宽.基于纳米颗粒的自由沉降法可降低光栅制作成本及技术门槛,方便实现大面积吸收光栅的制作.
Abstract
To fabricate X-ray absorption gratings, deep reactive ion etching and wet etching are used to fabricate grating structures on silicon wafers, and a liquid carrier, which is wet with the surface of grating structure, is used to bring the bismuth nanoparticles into grating structures in a dense arrangement. Then, a grating structure with the period of 42 μm and depth of 150 μm is filled. To show the performance of the fabricated absorption grating, a comparison with the bulk bismuth grating obtained by micro-casting method is provided. Moreover, the relationship between the grating period and the filling compactness through filling grating structures with periods of 24 μm and 6 μm is found. The scanning electron microscopy micrographs show the effectiveness of free settling method for the large-period grating structures. However, for the structures with 6 μm period, the filling compactness is not satisfied. The results illustrate that bismuth nanoparticles that their diameters are much less than the width of grating structures should be selected for the small-period absorption gratings. Furthermore, nanoparticles-based free settling method lowers grating cost and technique threshold, and allows the fabrication of large-area absorption gratings.
参考文献

[1] HERZEN J, DONATH T, BECKMANN F, et al. X-ray grating interferometer for materials-science imaging at a low-coherent wiggler source[J]. Review of Scientific Instruments, 2011, 82(11): 113711.

[2] ARBOLEDA C, WANG Z, KOEHLER T, et al. Sensitivity-based optimization for the design of a grating interferometer for clinical X-ray phase contrast mammography[J]. Optics Express, 2017, 25(6): 6349-6364.

[3] 夏天, 张学龙, 马军山, 等. 空间相干与入射光子能量对临床类同轴X射线相衬成像影响[J]. 光子学报, 2011, 40(4): 627-635.

    XIA Tian, ZHANG Xue-long, MA Jun-shan, et al. Effect of spatial coherence and in incident X-ray photon energies on clinical X-ray in-line phase-contrast imaging[J]. Acta Photonica Sinica, 2011, 40(4): 627-635.

[4] ZHU P, ZHANG K, WANG Z, et al. Low-dose, simple, and fast grating-based X-ray phase-contrast imaging[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(31): 13576-13581.

[5] MOMOSE A, KAWAMOTO S, KOYAMA I, et al. Demonstration of X-ray Talbot interferometry[J]. Japanese Journal of Applied Physics, 2003, 42(7B): L866-L868.

[6] PFEIFFER F, WEITKAMP T, BUNK O, et al. Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources[J]. Nature Physics, 2006, 2(4): 258-261.

[7] 刘鑫, 郭金川. 微分相衬成像阵列光源[J]. 光子学报, 2011, 40(2): 242-246.

    LIU Xin, GUO Jin-chuan. Arrayed source in differential phase-contrast imaging[J].Acta Photonica Sinica, 2011, 40(2): 242-246.

[8] NODA D, TANAKA M, SHIMADA K, et al. Fabrication of large area diffraction grating using LIGA process[J]. Microsystem Technologies, 2008, 14(9-11): 1311-1315.

[9] WU B, KUMAR A, PAMARTHY S. High aspect ratio silicon etch[J].Journal of Applied Physics, 2010, 108(5): 051101.

[10] DAVID C, BRUDER J, ROHBECK T, et al. Fabrication of diffraction gratings for hard x-ray phase contrast imaging[J]. Microelectronic Engineering, 2007, 84(5-8): 1172-1177.

[11] LEI Y, DU Y, LI J, et al. Fabrication of X-ray absorption gratings via micro-casting for grating-based phase contrast imaging[J]. Journal of Micromechanics and Microengineering, 2014, 24(1): 015007.

[12] VILA-COMAMALA J, ROMANO L, GUZENKO V, et al. Towards sub-micrometer high aspect ratio X-ray gratings by atomic layer deposition of iridium[J]. Microelectronic Engineering, 2018, 192: 19-24.

[13] FINNEGAN P S, HOLLOWELL A E, ARRINGTON C L, et al. High aspect ratio anisotropic silicon etching for X-ray phase contrast imaging grating fabrication[J]. Materials Science in Semiconductor Processing, 2019, 92: 80-85.

[14] KAGIAS M, WANG Z, GUZENKO V A, et al. Fabrication of Au gratings by seedless electroplating for X-ray grating interferometry[J]. Materials Science in Semiconductor Processing, 2019, 92: 73-79.

[15] 李冀, 黄建衡, 雷耀虎, 等. 基于级联光栅的X射线相衬成像实验研究[J]. 光子学报, 2019, 48(1): 0111003.

    LI Ji, HUANG Jian-heng, LEI Yao-hu, et al. Experimental study of X-ray phase contrast imaging based on cascaded grating[J]. Acta Photonic Sinica, 2019, 48(1): 0111003.

[16] LEI Y, LIU X, HUANG J, et al. Cascade Talbot-Lau interferometers for X-ray differential phase-contrast imaging[J]. Journal of Physics D: Applied Physics, 2018, 51(38): 385302.

雷耀虎, 许桂雯, 李乔飞, . 基于铋纳米颗粒的自由沉降法制作X射线吸收光栅[J]. 光子学报, 2019, 48(10): 1005001. 雷耀虎, 许桂雯, 李乔飞, WALI Faiz. Fabrication of X-ray Absorption Gratings by Free Settling of Bismuth Nanoparticles[J]. ACTA PHOTONICA SINICA, 2019, 48(10): 1005001.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!