作者单位
摘要
中国地质大学(武汉)珠宝学院, 湖北 武汉 430074
利用常规宝石学仪器、 电子探针、 傅里叶变换红外光谱仪、 激光拉曼光谱仪、 紫外-可见分光光度计和三维荧光光谱仪等, 对马达加斯加黄色方柱石的宝石学性质及谱学特征进行了研究分析。 马达加斯加方柱石的宝石学特征与方柱石理论值基本一致; 方柱石样品颜色均匀, 具有玻璃光泽, 原石晶型较为完好且表面普遍可见纵纹及褐红色杂质, 部分样品表面可见晕彩效应, 样品内部可见多种包裹体, 如黑云母、 无色晶体包裹体等。 红外光谱分析结果表明, 样品在指纹区均显示1 039, 1 105和1 196 cm-1处 Si(Al)—O伸缩振动吸收峰; 752 cm-1处Si—Si(Al)伸缩振动吸收峰; 551, 687和624 cm-1处O—Si (Al)—O 弯曲振动吸收峰; 459 cm-1处Si—O—Si的弯曲振动与Na(Ca)—O伸缩振动的耦合吸收峰; 416 cm-1处Si—O—Si弯曲振动吸收峰。 红外光谱官能团区的诊断性鉴定依据为: 3 530和3 592 cm-1处O—H振动引起的吸收峰; 2 499, 2 629和2 964 cm-1处CO2-3振动产生的吸收峰。 拉曼光谱分析结果表明, 桥氧弯曲振动产生459和538 cm-1两处吸收峰; Al—O振动导致775 cm-1吸收峰; 硅氧四面体Q4结构单元振动产生1 114 cm-1吸收峰。 紫外-可见光吸收光谱可知, 马达加斯加方柱石为过渡金属元素致色, 铁离子的存在导致了379和420 nm两处吸收峰, 且420 nm吸收峰的强弱影响着方柱石的颜色深浅。 致色原因为占据了晶体结构中四面体位置的Fe2+与Fe3+之间电荷转移, 从而产生黄色。 三维荧光光谱分析显示, 方柱石具有较为一致的发光行为, 均可见一强一弱两个荧光峰, 多集中在302 nm(λex)/343 nm(λem)附近。 电子探针成分分析结果表明样品属于方柱石族系列中的针柱石, Ma值范围为66%~69%, 平均Ma值为68.1%, 且随着Ma值的增高, 双折射率随着变小。 谱学测试作为无损测试技术, 适用于鉴定宝石品种。 对鉴定马达加斯加方柱石具有重要的意义, 同时为产地溯源、 区分优化处理品种提供数据支持。
方柱石 宝石学特征 谱学特征 马达加斯加 Scapolite Gemmological characteristic Spectral characteristic Madagascar 
光谱学与光谱分析
2022, 42(7): 2194
作者单位
摘要
1 中国地质大学(武汉)珠宝学院, 湖北 武汉 430074
2 深圳技术大学创意设计学院, 广东 深圳 518118
绿松石常见蓝色、 绿色和杂色等颜色, 其中蓝色和绿色者因颜色鲜艳, 价值最高, 因此绿松石优化处理品也多为蓝色和绿色。 利用有机树脂对质松色浅的绿松石进行充填处理(简称“有机充填”)是目前最主要的绿松石优化处理方式, 常见浸胶和注胶两种处理类型。 采用基础宝石学测试、 红外吸收光谱仪、 三维荧光光谱仪和X射线荧光光谱仪等测试技术分别对天然绿松石、 浸胶和注胶充填处理绿松石的宝石学特征及谱学特征进行了系统的对比分析和研究。 研究结果显示, 天然绿松石紫外灯长波下具中等至弱荧光, 荧光强度与色调和致密程度相关, 浸胶绿松石长波荧光强于相同颜色天然绿松石, 注胶绿松石长、 短波下均具有中等至弱荧光。 浸胶绿松石的红外吸收光谱显示, 除绿松石本身特征峰外, 还可见1 739 cm-1附近ν(C=O)吸收峰和2 926和2 851 cm-1亚甲基的吸收峰, 注胶绿松石除羰基及亚甲基吸收峰更强外, 还可见1 508 cm-1处苯环骨架特征吸收峰。 三维荧光光谱测试显示, 天然蓝色绿松石具有一个Ex为370 nm的中等强度特征荧光峰、 半峰宽约为100 nm, 绿色、 杂色系和低致密度绿松石荧光极弱; 蓝色浸胶绿松石具有Ex为380~400 nm内的强对称荧光特征峰, 绿色浸胶绿松石可见一较强的荧光特征峰, 半峰宽约为80 nm; 蓝色注胶绿松石具有两个Ex分别为278和390 nm附近的较弱强度荧光特征峰, 绿色注胶绿松石具有中等强度的荧光峰、 半峰宽约为150 nm, 荧光峰区域范围增大可能因为含有较多有机物。 结合X射线荧光光谱仪分析Fe对绿松石的荧光会产生一定抑制作用。 绿松石荧光特征和三维荧光光谱测试作为无损检测技术, 具有测试简便、 快捷、 有效的特点, 对准确鉴定绿松石和有机充填处理品具有重要的现实意义。
绿松石 有机充填 荧光 荧光光谱 红外吸收光谱 Turquoise Organic matter filling Fluorescence Fluorescence spectra Infrared absorption spectroscopy 
光谱学与光谱分析
2021, 41(9): 2918
作者单位
摘要
1 中国地质大学(武汉)珠宝学院, 湖北 武汉 430074
2 上海建桥学院珠宝学院, 上海 201306
3 深圳技术大学创意设计学院, 广东 深圳 518118
湖北省十堰市竹山县秦古镇小林扒矿区产出了一类较为特殊的绿松石。 这类绿松石颜色多为浅绿色、 浅黄绿色或浅苹果绿色, 产出原石具滑感, 性脆, 亦称之为“油松”。 与其结构细腻度相当的绿松石原料相比, 此类绿松石密度普遍明显偏低, 硬度偏小; 经传统有机结合剂充填处理后, 致密度及硬度均未见明显改善, 无法作为首饰级材料使用, 造成绿松石这类不可再生的宝贵资源严重浪费。 以“油松”为研究对象, 采用常规宝石学测试仪器、 红外吸收光谱仪、 X射线粉晶衍射仪、 电子探针仪以及环境扫描电子显微镜等对其化学组分及显微结构特征等进行测试, 为有效利用这类绿松石资源提供科学依据。 测试结果表明, “油松”的相对密度为2.04~2.22; 在长波和短波紫外光下荧光反应均显示为惰性。 “油松”的红外吸收光谱谱带主要分布在3 700~3 090 cm-1以及1 638~466 cm-1范围内, 其中3 509和3 462 cm-1处峰形尖锐的OH致吸收光谱、 3 277和3 090 cm-1 附近较宽缓的结晶水致吸收光谱特征与绿松石的官能团区吸收特征一致。 “油松”在高频区3 700和3 622 cm-1处具有高岭石或蒙脱石中OH 致弱红外吸收谱峰。 在1 638 cm-1附近均出现有强度中等的较为宽缓的吸收峰, 该吸收峰与绿松石中H2O的弯曲振动致吸收谱峰一致。 指纹区的吸收峰峰形及峰位均与一般绿松石有较大差异, 为Si—O及P—O的混合吸收谱峰。 “油松”的主要化学组成元素为Si, Al和P, 含有少量的Fe和Cu, 并含有微量的Mg, Ca及Cr。 组成元素的氧化物含量分别为: w(SiO2): 25.60%~30.90%, w(Al2O3): 26.55%~28.29%, w(FeOT): 5.35%~5.90%, w(P2O5): 22.00%~23.52%, w(CuO): 5.10%~5.87%。 “油松”中的Al2O3和P2O5的含量均低于绿松石成分理论值及其他各产地的天然绿松石。 相对于天然绿松石中较低的SiO2含量(0.02%~0.12%), “油松”中SiO2的含量明显偏高, 均高于25%。 “油松”的主要组成矿物为绿松石, 并含有一定量的粘土矿物蒙脱石及蒙脱石-高岭石, 其硬度低, 具有滑感, 是“油松”硬度低, 具有滑感且优化处理效果不显著的主要原因。
绿松石 油性 红外吸收光谱 X粉晶衍射 蒙脱石 Turquoise Oily Infrared absorption spectrum X Ray diffraction Montmorillonite 
光谱学与光谱分析
2021, 41(4): 1246

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!