鲁志强 1,2刘可可 1,2李强 1,2胡芹 1,2[ ... ]唐新峰 1,2,*
作者单位
摘要
1 1.武汉理工大学襄阳示范区, 湖北隆中实验室, 襄阳 441000
2 2.武汉理工大学 材料复合新技术国家重点实验室, 武汉 430070
3 3.武汉理工大学 纳微结构研究中心, 武汉 430070
晶粒细化是提高Bi0.5Sb1.5Te3合金力学性能的有效途径, 但是粉末冶金过程中晶粒细化导致的类施主效应会严重劣化材料热电性能, 制约了Bi0.5Sb1.5Te3基合金在微型热电器件中的应用。本研究围绕p型Bi0.5Sb1.5Te3基合金, 采用实验结合理论计算系统研究了粉末冶金制备过程中研磨和脱附气氛对烧结样品中类施主效应和电热输运性能的影响规律和机制。Bi0.5Sb1.5Te3基合金破碎研磨过程中粉体表面产生缺陷$~\text{V}_{\text{Te}}^{\cdot \cdot }$和${{\text{{V}'''}}_{\text{Sb}}}$并物理吸附空气中的O2, 在烧结过程中与吸附的O2发生缺陷化学反应, 产生大量$\text{V}_{\text{Te}}^{\cdot \cdot }$空位和自由电子, 导致类施主效应, 使空穴浓度大幅降低。在保护气氛下(Ar气氛)研磨避免接触空气或在空气中研磨后放置在保护气氛下脱附O2, 都可以有效抑制类施主效应, 使样品保持较高的载流子浓度和电导率, 且性能在473 K下保持稳定。在空气中研磨后直接烧结的样品和放置在空气中粉体烧结的样品表现出明显的类施主效应, 样品的载流子浓度从保护气氛处理样品的4.49×1019 cm−3下降至3.21×1019 cm−3, 采用保护气氛处理的粉体烧结样品在402 K下获得最高的热电优值ZT为1.03, 平均ZTave为0.92。该研究为调控p型多晶Bi2Te3基化合物的类施主效应和优化其热电性能提供了新思路。
Bi0.5Sb1.5Te3合金 类施主效应 载流子浓度 热电性能 Bi0.5Sb1.5Te3 alloy donor-like effect carrier concentration thermoelectric property 
无机材料学报
2023, 38(11): 1331
作者单位
摘要
武汉理工大学 材料复合新技术国家重点实验室, 武汉 430070
通过自蔓延高温合成(SHS)及其衍生方法可以超快速地制备热电材料粉体或块体, 并获得优异的热电性能。但是在采用SHS技术制备方钴矿材料的过程中, 易出现非稳态SHS反应, 使得反应后的坯体中产生杂相。本工作采用激光诱导点火和坯体预热相结合的方法, 分别研究了激光点火的功率密度η和预热温度T0对方钴矿材料自蔓延高温合成过程的影响, 总结了方钴矿CoSb3燃烧模式的变化规律, 并获得了制备单相的工艺窗口。研究结果表明, 当激光点火功率密度η固定时, 随着预热温度T0升高, 方钴矿的SHS反应存在“反应中止→非稳态螺旋燃烧→稳态燃烧→非稳态螺旋燃烧”的转变过程; 在η=3.75 J·mm-2, 250 ℃≤T0<370 ℃条件下, 可以获得单相CoSb3
自蔓延高温合成 方钴矿 包晶反应 稳态燃烧 self-propagating high-temperature synthesis skutterudite peritectic reaction steady-state combustion 
无机材料学报
2023, 38(7): 815
作者单位
摘要
Bi2Te3基微型热电器件的尺寸越小, 界面结合强度及接触电阻对于器件力学性能、开路电压以及输出功率等的影响就越显著。因此开发成本低、工艺简单的热电单元制备技术, 并使n型Bi2Te3基块体材料与阻挡层间的界面兼具低接触电阻、高结合强度具有重要意义。本工作将n型Bi2Te3基热电材料薄片在混合酸溶液(pH~3)中进行表面处理, 随后进行化学镀Ni(5 μm), 再与Cu电极焊接制备得到热电单元。腐蚀后, n型Bi2Te3基热电材料表面大的沟壑与Ni阻挡层间形成锚固效应, 腐蚀6 min的材料结合强度高达15.88 MPa。大沟壑表面进一步腐蚀后出现的精细分支与Ni阻挡层间形成纳米孔洞, 显著增大了界面接触电阻, 腐蚀2 min的材料达到2.23 Ω?cm2。最终, 腐蚀4 min后镀Ni的n型Bi2Te3基热电片材与p型Bi2Te3基热电片材制备的微型热电器件在20 K温差(高温端306 K, 低温端286 K)下的输出功率高达3.43 mW, 相较于商用电镀镀层制备的同尺寸器件提升了31.92%。本工作将为微型热电器件的性能优化提供支撑。
Bi2Te3 界面结合强度 界面接触电阻 镍阻挡层 微型热电器件 Bi2Te3 interface bonding strength interface contact resistance Ni barrier layer micro thermoelectric device 
无机材料学报
2023, 38(2): 163
作者单位
摘要
武汉理工大学 材料复合新技术国家重点实验室, 武汉 430070
Cu2SnSe3基化合物作为一种绿色环保的新型热电材料, 近年受到了研究者的广泛关注。然而, 本征Cu2SnSe3基化合物载流子浓度低、电性能较差。为优化Cu2SnSe3化合物的电热输运性能, 本研究采用熔融、退火结合放电等离子烧结技术制备了一系列Cu2SnSe3-xTex (x=0~0.2)和Cu2Sn1-yInySe2.9Te0.1 (y=0.005~0.03)样品, 研究了Te固溶和In掺杂对材料电热输运性能的影响。Te在Cu2SnSe3-xTex (x=0~0.2)化合物中的固溶度为0.10, Te固溶显著增加了材料的载流子有效质量, 从本征Cu2SnSe3样品的0.2me增加到Cu2SnSe2.9Te0.1样品的0.45me, 显著提高了材料的功率因子, Cu2SnSe2.99Te0.01样品在300 K下获得最大功率因子为1.37 μW·cm-1·K-2。为了进一步提高材料的电传输性能, 本研究以Cu2SnSe2.9Te0.1为基体并选取In在Sn位掺杂。In掺杂将Cu2SnSe3基化合物的载流子浓度从5.96×1018 cm-3 (Cu2SnSe2.9Te0.1)显著提高到2.06×1020 cm-3 (Cu2Sn0.975In0.025Se2.9Te0.1)。调控载流子浓度促进了材料多价带参与电传输, 材料的电导率和载流子有效质量显著增加, 功率因子得到大幅度提升, 在473 K下Cu2Sn0.995In0.005Se2.9Te0.1化合物获得最大功率因子为5.69 μW·cm-1·K-2。由于电输运行性能显著提升和晶格热导率降低, Cu2Sn0.985In0.025Se2.9Te0.1样品在773 K下获得最大ZT为0.4, 较本征Cu2SnSe3样品提高了4倍。
Cu2SnSe3基化合物 Te掺杂 In掺杂 热电性能 Cu2SnSe3-based compound Te doping In doping thermoelectric property 
无机材料学报
2022, 37(10): 1079
作者单位
摘要
1 1.武汉理工大学 材料复合新技术国家重点实验室, 武汉 430070
2 2.武汉理工大学 纳微结构研究中心, 武汉 430070
探索热电材料的超快速制备技术并优化其性能具有重要意义。本研究通过自蔓延高温合成技术快速制备得到BiAgSeS化合物。动力学过程研究表明, Bi熔化是激活并触发原料混合物发生自蔓延反应的关键, 非平衡过程中产生的高浓度纳米及原子尺度应力应变区与螺旋位错为材料生长提供了永不消逝的台阶源, 并在材料等离子体活化烧结致密化过程中进一步主导晶粒长大, 最终在材料晶界处留下大量纳米孔洞。相比于传统熔融法结合等离子体活化烧结技术, 本技术制备的材料的电导率略有提高, 晶格热导率则下降约6%, 最终材料ZT值在整个温区均有提高, 并在773 K时取得最大值0.5。
热电 铋银硒硫化物 熵工程 自蔓延高温合成 孤对电子 thermoelectric BiAgSeS entropy engineering self-propagating high-temperature synthesis lone pair electron 
无机材料学报
2021, 36(9): 991
作者单位
摘要
在GeTe-Bi2Te3赝二元系统中, (GeTe)n(Bi2Te3)m化合物往往具有较低的晶格热导率, 但其中很多组分的热电性能尚未得到系统研究。本研究通过熔融、淬火、退火结合放电等离子烧结工艺制备了一系列(GeTe)nBi2Te3(n=10, 11, 12, 13, 14)单相多晶样品, 并对其相组成和热电性能进行表征和研究。掺杂Bi2Te3可以显著增强点缺陷声子散射, 大幅度降低材料的晶格热导率, 在723 K时, (GeTe)13Bi2Te3样品的总热导率低至1.63 W?m -1?K -1。此外, 掺杂Bi2Te3和调控GeTe的相对含量, 提高了材料的载流子有效质量, 即使在较高的载流子浓度下, 样品依然保持较高的塞贝克系数和功率因子, 在723 K, (GeTe)13Bi2Te3样品获得最大的功率因子为2.88×10 -3 W?m -1?K -2, 最终(GeTe)13Bi2Te3样品在723 K获得的最大ZT值达到1.27, 较未掺杂的GeTe样品提高了16%。
Bi2Te3掺杂 结构 热电性能 GeTe GeTe Bi2Te3 doping structure thermoelectric property 
无机材料学报
2021, 36(1): 75
作者单位
摘要
武汉理工大学 材料复合新技术国家重点实验室, 武汉 430070
固溶结合掺杂是优化材料热电性能的有效途径。本研究采用固相反应结合等离子体活化烧结成功合成了一系列单相的Mo1-xWxSeTe(0≤x≤0.5)固溶体及其Nb掺杂产物。热电输运研究表明, W固溶结合Nb掺杂显著提高了Nb2yMo0.5-yW0.5-ySeTe固溶体的载流子浓度、载流子迁移率、电导率和功率因子, 适当降低了样品的晶格热导率, 进而显著提高了材料的热电优值ZT。随着Nb掺杂量的增加, 掺杂引入的离散能级转变为连续的杂质能带, 同步提升了载流子浓度和载流子迁移率。取向性研究发现, 由于在平行方向晶格热导率较低, Nb2yMo0.5-yW0.5-ySeTe固溶体在平行烧结压力方向的ZT略优。最优组分Nb0.03Mo0.485W0.485SeTe在垂直于烧结压力和平行于烧结压力方向获得了最高ZT, 分别达到0.31和0.36(@823 K), 是目前MoSe2基热电材料获得的最好结果之一。后续通过优化掺杂元素来改善Seebeck系数和功率因子, 将有望进一步提升MoSe2基化合物的ZT
Mo1-xWxSeTe固溶体 Nb掺杂 晶格热导率 热电优值ZT Mo1-xWxSeTe solid solutions Nb doping lattice thermal conductivity thermoelectric figure of merit ZT 
无机材料学报
2020, 35(12): 1373

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!