王曲惠 1,2王海珠 1,2王骄 1,2马晓辉 1,2,*
作者单位
摘要
1 长春理工大学 高功率半导体国家重点实验室,吉林 长春 130022
2 长春理工大学 重庆研究院,重庆 401135
针对高应变InGaAs/GaAs多量子阱中存在的局域态问题,利用金属有机化合物气相外延(MOCVD)技术,设计并生长了五周期的In0.3Ga0.7As/GaAs高应变多量子阱材料。通过原子力显微镜(Atomic force microscope,AFM)和变温光致发光(Photoluminescence,PL)测试,发现量子阱内部存在缺陷及组分波动的材料无序性表现,验证了多量子阱内部局域态的存在及起源。同时发现在不同测试位置,局域态在低温下对光谱的影响也不同,分别表现为双峰分布和峰位“S”型变化。这进一步说明材料内部无序化程度不同,导致局域态的深度也不同。依据温度?带隙关系的拟合,提出了包含局域态的多量子阱材料的电势分布,并揭示了局域态载流子和自由载流子的复合机制。并且借助变功率PL测试,研究了在不同激发功率密度下不同深度的局域态的发光特性。
InGaAs/GaAs多量子阱 局域态 高应变 金属有机化合物气相外延(MOCVD) InGaAs/GaAs MQWs localized states high strain metal⁃organic chemical vapor deposition(MOCVD) 
发光学报
2023, 44(4): 627
Author Affiliations
Abstract
Wide Bandgap Semiconductor Technology Disciplines State Key Laboratory, School of Microelectronics, Xi'dian University, Xi'an 710071, China
The nano-patterned InGaN film was used in green InGaN/GaN multiple quantum wells (MQWs) structure, to relieve the unpleasantly existing mismatch between high indium content InGaN and GaN, as well as to enhance the light output. The different self-assembled nano-masks were formed on InGaN by annealing thin Ni layers of different thicknesses. Whereafter, the InGaN films were etched into nano-patterned films. Compared with the green MQWs structure grown on untreated InGaN film, which on nano-patterned InGaN had better luminous performance. Among them the MQWs performed best when 3 nm thick Ni film was used as mask, because that optimally balanced the effects of nano-patterned InGaN on the crystal quality and the light output.The nano-patterned InGaN film was used in green InGaN/GaN multiple quantum wells (MQWs) structure, to relieve the unpleasantly existing mismatch between high indium content InGaN and GaN, as well as to enhance the light output. The different self-assembled nano-masks were formed on InGaN by annealing thin Ni layers of different thicknesses. Whereafter, the InGaN films were etched into nano-patterned films. Compared with the green MQWs structure grown on untreated InGaN film, which on nano-patterned InGaN had better luminous performance. Among them the MQWs performed best when 3 nm thick Ni film was used as mask, because that optimally balanced the effects of nano-patterned InGaN on the crystal quality and the light output.
GaN InGaN nano-mask nano-patterned MQWs 
Journal of Semiconductors
2023, 44(4): 042801
单恒升 1,2,*李明慧 1,3李诚科 1,3刘胜威 1,3[ ... ]李小亚 4
作者单位
摘要
1 陕西科技大学材料原子·分子科学研究所,西安 710021
2 西安电子科技大学,宽禁带半导体材料教育部重点实验室,西安 710071
3 陕西科技大学材料科学与工程学院,西安 710021
4 西北大学信息科学与技术学院,西安 710127
本文利用金属有机化合物化学气相沉积(MOCVD)技术在(001)面图形化蓝宝石衬底(PSS)上生长了一种含有AlGaN-InGaN/GaN MQWs (multiple quantum wells)-AlGaN双势垒结构的高In组分太阳能电池外延材料。高分辨率X射线衍射(HRXRD)和光致发光(PL)谱分析表明,与含有AlGaN电子阻挡层的低In组分的量子阱结构太阳能电池外延材料相比,该结构材料具有较小的半峰全宽(FWHM),计算表明:此结构材料的位错密度降低了一个数量级,达到107 cm-2;同时,有源区中的应变弛豫降低了51%;此外,此结构材料的发光强度增强了35%。研究结果表明含有AlGaN双势垒结构的外延材料可以减小有源区的位错密度,降低非辐射复合中心的数目,增大有源区有效光生载流子的数目,为制备高质量太阳能电池提供实验依据。
金属有机化合物化学气相沉积 太阳能电池外延材料 AlGaN双势垒结构 位错密度 光生载流子 metal organic chemical vapor deposition solar cell epitaxial material AlGaN double barrier structure InGaN/GaN MQWs InGaN/GaN MQWs dislocation density photo-induced carrier 
人工晶体学报
2023, 52(1): 83
作者单位
摘要
1 中国科学技术大学纳米技术与纳米仿生学院, 安徽 合肥 230026
2 中国科学院苏州纳米技术与纳米仿生研究所, 江苏 苏州 215123
3 昆山杜克大学自然与应用科学学部, 江苏 昆山 215316
金属有机化学气相沉积(MOCVD)方法制备InGaN/GaN多量子阱结构时, 在GaN势垒层生长的N2载气中引入适量H2, 能够有效改善阱/垒界面质量从而提升发光效率。 本工作利用光致发光(PL)光谱技术, 对蓝光激光器结构中的InGaN/GaN多量子阱的发光性能进行了精细的光谱学测量与表征, 研究了通H2生长对量子阱界面的调控效应及其发光效率提升的物理机制。 室温PL光谱结果显示, GaN势垒层生长载气中引入2.5%的H2使InGaN/GaN多量子阱的发光效率提升了75%、 发光峰的峰位蓝移了17 meV、 半峰宽(FWHM)减小了10 meV。 通过功率依赖的PL光谱特征分析, 我们对InGaN/GaN量子阱中的量子限制Stark效应(QCSE)和能带填充(Band Filling)效应进行了清晰的辨析, 发现了发光峰峰位和峰宽的光谱特征主要受QCSE效应影响, H2的引入能够大幅度降低QCSE效应, 并且确定了QCSE效应被完全屏蔽情况下的发光峰能量为2.75 eV。 温度依赖的PL光谱数据揭示了通H2生长量子阱结构中显著减弱的载流子局域化行为, 显示界面质量提高有效降低了限制势垒的能量波动, 从而导致更窄的发光峰半峰宽。 PL光谱强度随温度的变化规律表明, 通H2生长并不改变量子阱界面处的非辐射复合中心的物理本质, 却能够显著减少非辐射复合中心的密度, 有助于提升量子阱的发光效率。 通过时间分辨PL光谱分析, 发现通H2生长会导致量子阱结构中更短的载流子辐射复合寿命, 但不影响非辐射复合寿命。 载流子复合寿命的变化特征进一步确认了通H2生长对量子阱结构中QCSE效应和非辐射复合中心的影响规律。 综合所有PL光谱分析结果, 我们发现通H2生长能够提高InGaN/GaN多量子阱的界面质量、 显著减弱应力效应(更弱的QCSE效应)、 降低限制势垒的能量波动以及减少界面处非辐射复合中心的密度, 从而显著提升量子阱的发光效率。 该研究工作充分显示了PL光谱技术对半导体量子结构发光性能的精细表征能力, 光谱分析结果能够为InGaN/GaN多量子阱生长提供有价值的参考。
InGaN/GaN多量子阱 光致发光光谱 量子限制Stark效应 载流子局域化 载流子复合寿命 InGaN/GaN MQWs Photoluminescence spectroscopy Quantum-confined Stark effect Carrier localization Carrier recombination lifetime 
光谱学与光谱分析
2022, 42(4): 1179
作者单位
摘要
Henan Key Laboratory of Photoelectric Energy Storage Materials and Applications, School of Physics and Engineering, Henan University of Science and Technology, Luoyang Henan 471023,CHN
采用射频磁控溅射设备以NiO为空穴注入层在MQWs/n?GaN上制备了p?NiO/MQWs/n?GaN异质结发光器件。通过X射线衍射仪(XRD)、原子力显微镜(AFM)、紫外分光光度计(UV?2700)等测试系统对制备的NiO层结构、形貌及光学特性进行了测试,结果表明NiO薄膜具有较好的结晶质量。对p?NiO/MQWs/n?GaN异质结器件进行了电流?电压(I?V)特性和电致发光(EL)特性测试。I?V特性测试结果显示,器件具有明显的整流特性,开启电压约为2.9 V。EL特性测试结果显示,该器件实现了室温下的蓝紫光发射,结合GaN的光致发光(PL)谱和器件的能带结构图,对器件的电致发光机理进行了深入研究。
量子阱 磁控溅射 电致发光 NiO NiO MQWs/n-GaN magnetron sputtering electroluminescence 
光电子技术
2020, 40(3): 180
作者单位
摘要
1 中国科学院 福建物质结构研究所, 福建 福州350002
2 中国科学院大学, 北京100049
对AlGaInAs多量子阱1 300 nm FP激光器进行反射式倒装封装,在热沉上靠近激光器出光端面约10~20 μm的区域采用Au反射层,对器件垂直方向出光进行反射。测试结果显示,与常规封装相比,采用这种结构封装芯片垂直发散角从34.5°降低至17°,器件单模光纤的平均耦合功率从1 850 μW提高至2 326 μW,耦合效率从21.1%提高到26.5%。对两种激光器进行光电参数的测量,结果表明:与常规封装器件相比,采用反射式倒装结构器件的饱和电流从135 mA提高至155 mA,饱和输出功率从37 mW提高至42 mW,热阻从194 K/W降低至131 K/W。最后对两种器件在95 ℃环境温度、100 mA电流下进行加速老化实验,老化结果显示:在老化条件下,器件衰退系数从常规封装的4.22×10-5降低至1.06×10-5,寿命从5 283 h提高至21 027 h。
AlGaInAs多量子阱激光器 倒装 Au反射层 发散角 加速老化 AlGaInAs MQWs laser flip chip Au reflector divergence angle accelerated aging 
发光学报
2018, 39(4): 534
作者单位
摘要
1 中国科学院福建物质结构研究所, 福州 350002
2 中国科学院大学, 北京 100049
对AlGaInAs多量子阱FP TO-56半导体激光器在不同环境温度、相同发热量下测量出光波长的变化来分析器件波长温度变化系数; 并对器件在室温、不同发热功率下的出光波长变化进行测量, 分析计算得到器件热阻为183K/W.接着对器件进行不同高温应力试验, 结果显示:环境温度从120℃增加至220℃时, 器件峰值波长发生缓慢蓝移; 当环境温度达到225℃时, 器件波长发生明显蓝移, 从试验前1 297 nm蓝移至1 265 nm; 温度继续增加至235℃, 波长蓝移至1 258 nm, 同时光谱模式间隔从试验前0.92 nm降低至0.84nm, 即模式有效折射率从3.66增加至3.77; 温度继续增加至240℃, 器件失效无光.其主要原因可能为:高温应力下, 激光器外延材料中波导层、量子阱量子垒中的Al、Ga、In金属元素往有源区方向迁移使得量子阱有效禁带宽度以及有源区波导折射率增大.该试验结果为进一步分析器件高温下器件的失效机理以及改善器件高温性能提供试验基础.
AlGaInAs多量子阱激光器 高温失效 热阻 波长蓝移 发散角 AlGaInAs MQWs laser High temperature failure Thermal resistance Wavelength blue shift Divergence angle 
光子学报
2018, 47(1): 0125002
作者单位
摘要
集成光电子学国家重点联合实验室 吉林大学电子科学与工程学院, 吉林 长春 130012
Ag 纳米粒子的形貌对InGaN/GaN 多量子阱(MQWs)的光致发光(PL)效率有着显著影响。本文采用离子束沉积(IBD)技术将Ag沉积在InGaN/GaN MQWs上, 然后通过快速热退火处理制备Ag纳米粒子。通过改变Ag的沉积时间获得了具有不同Ag纳米粒子形貌的样品。用原子力显微镜对各样品的Ag纳米粒子形貌和尺寸进行了表征, 并且测试了吸收谱、室温和变温PL谱及时间分辨光致发光(TRPL)谱。结果表明: 随着Ag沉积时间的延长, 所得Ag纳米粒子粒径增大, 粒子纵横比先增大后减小且吸收谱峰红移。由于不同形貌的Ag纳米粒子在入射光作用下产生的局域表面等离激元(LSPs)与MQWs中激子耦合强度不同, 光发射能力也不同, 与没有Ag纳米粒子的样品相比, 沉积时间为15 s的样品室温PL积分强度被抑制6.74倍, 沉积时间为25 s和35 s的样品室温PL积分强度分别增强1.55和1.72倍且峰位发生红移, 沉积时间为45 s的样品室温PL积分强度基本没有变化。TRPL与变温PL的测试结果证明, 室温PL积分强度的改变是由于LSPs与MQWs中的激子耦合作用引起的。纵横比大且吸收谱与MQWs的PL谱交叠大的Ag纳米粒子能够更好地增强InGaN/GaN MQWs的发光。
离子束沉积 Ag纳米粒子 局域表面等离激元 InGaN/GaN多量子阱 光致发光 ion beam deposition Ag nanoparticles localized surface plasmons InGaN/GaN MQWs photoluminescence 
发光学报
2017, 38(3): 324
刘诗涛 1,2,3,*王立 1,2,3伍菲菲 1,2,3杨祺 1,2,3[ ... ]黄海宾 1,2,3
作者单位
摘要
1 南昌大学 材料科学与工程学院, 江西 南昌330031
2 南昌大学 国家硅基LED工程技术研究中心, 江西 南昌330047
3 南昌大学 光伏研究院, 江西 南昌330031
通过测量光电流,直接观察了InGaN/GaN量子阱中载流子的泄漏程度随温度升高的变化关系。当LED温度从300 K升高到360 K时,在相同的光照强度下,LED的光电流增大,说明在温度上升之后,载流子从量子阱中逃逸的数目更多,即载流子泄漏比例增大。同时,光电流的增大在激发密度较低的时候更为明显,而且光电流随温度的增加幅度与激发光子的能量有关。用量子阱-量子点复合模型能很好地解释所观察到的实验现象。实验结果直接证明,随着温度的升高,InGaN/GaN量子阱中的载流子泄漏将显著增加,而且在低激发密度下这一效应更为明显。温度升高导致的载流子泄漏增多是InGaN多量子阱LED发光效率随温度升高而降低的重要原因。
InGaN/GaN多量子阱 发光二极管 载流子泄漏 量子效率 InGaN/GaN MQWs light-emitting diodes carrier leakage quantum efficiency 
发光学报
2017, 38(1): 63
作者单位
摘要
1 厦门大学物理系, 福建 厦门 361005
2 厦门大学电子工程系, 福建 厦门 361005
利用金属有机物化学气相沉积技术在蓝宝石衬底上生长了InGaN/GaN多量子阱外延结构, 高分辨率X射线衍射测量结果显示, 量子阱结构界面清晰, 周期重复性很好, InGaN阱层的In组分约为 0.2。利用该外延结构制备的InGaN/GaN多量子阱太阳电池的开路电压为2.16V, 转换效率达到了0.64%。器件的I-V测量结果显示, 在光照条件下, 曲线的正向区域存在一明显的“拐点”。随着聚光度的减小, I-V曲线的“拐点”逐渐向高电压区域移动, 同时器件的开路电压也随之急剧下降。通过与理论计算对比, 发现器件开路电压的下降幅度明显大于理论计算值。进一步分析表明, InGaN量子阱的极化效应不仅是I-V曲线产生拐点以及器件开路电压下降过快的主要原因, 也是影响氮化物太阳电池性能的关键因素之一。
InGaN/GaN多量子阱 极化效应 拐点 太阳电池 InGaN/GaN MQWs polarization effects turning point solar cell 
半导体光电
2014, 35(2): 206

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!