张培 1柴鑫毅 1李少君 1任林娇 1,*[ ... ]姜利英 2,3,**
作者单位
摘要
1 郑州轻工业大学 电气信息工程学院,河南 郑州 450002
2 郑州轻工业大学 电子信息学院,河南 郑州 450002
3 郑州轻工业大学 量子科技研究院,河南 郑州 450002
通过溶剂热反应法制备了N和O含量不同的碳量子点(CQDs)溶液,利用“点击”化学反应将CQDs与非计量硫醇?烯(OSTE)聚合物交联固化,形成CQDs/OSTE复合材料。固化后,O?CQDs的荧光量子产率从液态下的2.6%提高到16.5%,增大倍数约为6倍;N,O?CQDs的荧光量子产率从液态下的4.5%提高到17.6%,增大倍数约为4倍。通过微结构和光学特性分析,我们认为交联固化后与氧相关的非辐射复合中心减少、非辐射跃迁过程抑制以及N和S的协同效应是提高CQDs材料发光效率的主要原因。本文的研究成果有望为CQDs的固态转化、表面功能化以及荧光增强提供一种有效、便捷的方法,从而促进CQDs在发光二极管、激光器和发光太阳能聚光器等领域的应用。
碳量子点 非计量硫醇-烯聚合物 交联增强荧光 表面态 与氧相关的发光中心 carbon quantum dots off-stoichiometric thiol-ene polymer cross-linking enhanced emission surface state luminescence center related to oxygen 
发光学报
2023, 44(11): 1990
作者单位
摘要
泉州师范学院化工与材料学院, 福建 泉州 362000
以胱氨酸和柠檬酸为碳源, 采用一步水热法合成了氮硫掺杂结构的蓝色荧光碳点(FCDs)。 FCDs在350 nm波长光源激发下, 于455 nm出现最大的荧光发射峰。 碳点水溶液在pH=6~11范围内都呈现稳定的荧光发射, 具有61.7%的高荧光量子产率和10.75 ns的长荧光寿命。 以此碳点为目标物, 设计层层自组装膜的简易制备方案, 探究银纳米复合基底对其荧光信号的增强效应, 通过增强型荧光传感膜实现提高药物检测灵敏度的目的。 实验过程中利用多巴胺碱性溶液的自聚合和还原效应, 在玻璃基底上形成平整的聚多巴胺膜, 同步进行硝酸银原位还原, 可制得均匀分散的聚多巴胺复合银纳米膜基底。 紫外光谱、 荧光光谱、 扫描电子显微镜和电子能谱检测结果表明, 在多巴胺聚合膜形成过程中原位还原的银纳米, 具有操作简便和稳定性能好优点, 纳米颗粒不易被氧化。 结合层层自组装多层膜技术(layer-by-layer self-assembled mutilayers, LBL SAMs), 在纳米复合膜表面组装聚电解质分子层, 精确调控银纳米与碳点的间隔距离, 构建荧光性自组装膜FTO/PDA-AgN/PDDA/[PSS/PDDA]3/FCDs, 探究银纳米对碳点的荧光增强效应。 研究结果表明, 当聚多巴胺复合银纳米基底与碳点之间达到一定间隔距离时, 银纳米粒子可增强自组装膜上碳点的荧光信号, 荧光强度增加近3倍, 相应的荧光寿命由6.084 ns减小至2.983 ns。 这种荧光增强效应呈现出来的距离依赖性、 辐射衰减加快和与银纳米还原程度相关性, 表明增强荧光的机理可能为银纳米和碳点之间的局域表面等离子共振效应。 葛根素的加入使传感膜上碳点的荧光信号发生猝灭, 猝灭的程度和葛根素的含量在3.33×10-7~1.50×10-5 mol·L-1范围内呈现良好的线性关系, 可建立荧光传感薄膜对葛根素的含量检测。 线性回归方程为I0/I=2.843×104cPue+1.068, 相关系数r=0.9985 6, 检出限QL=2.31×10-7 mol·L-1。 相比于FTO/PDA/PDDA/[PSS/PDDA]3/FCDs, 增强荧光型传感膜明显提高了对葛根素的响应灵敏度, 检测限降低近一个数量级。
银纳米粒子 聚多巴胺 金属增强荧光 自组装膜 葛根素 Ag manoparticles Polydopamine Metal-enhanced fluorescence Self-assembled membrane Puerarin 
光谱学与光谱分析
2021, 41(1): 168
作者单位
摘要
上海理工大学 光电信息与计算机工程学院,上海 200093
黄曲霉素B1(aflatoxin B1, AFB1)是一种常见于农作物中的真菌毒素,是所有真菌霉素中毒性最强且具有致癌性。因此,快速、有效地检测出食品中AFB1对于食品安全来说具有重要意义。设计了一种基于表面增强荧光(surface-enhanced fluorescence, SEF)技术的光学芯片用于AFB1灵敏检测。该光学芯片以纳米多孔金(nanoporous gold, NPG)作为荧光增强基底,通过在其表面先后组装适体SH-DNA2和互补适体Cy5-DNA1构建针对AFB1的功能芯片。该芯片利用AFB1和Cy5-DNA1与SH-DNA2之间竞争结合,释放Cy5-DNA1引发来自Cy5荧光信号的衰减,通过监测Cy5的荧光强度的变化实现对AFB1的检测,检测极限可达到10?7 μg/L且线性动态范围有4个量级。
表面增强荧光 黄曲霉素B1 纳米多孔金 核酸适配体 surface-enhanced fluorescence aflatoxin B1 nanoporous gold aptamer 
光学仪器
2021, 43(1): 69
作者单位
摘要
1 贵州大学贵州省光电子技术及应用重点实验室, 贵州 贵阳 550025
2 贵州大学医学院, 贵州 贵阳 550025
利用TiN纳米粒子对CdSe量子点和多孔Al2O3薄膜构成的异质结的表面荧光增强效应进行了实验研究。采用电化学沉积的方法,将TiN纳米粒子沉积于多孔Al2O3薄膜表面,再将胶体CdSe量子点自组装于TiN/Al2O3薄膜的表面,进而制备了CdSe/TiN/Al2O3异质结。同时,利用扫描近场光学显微镜测量了CdSe/TiN/Al2O3异质结的表面增强荧光效应。结果表明,由于TiN具有良好的电子传输特性,提高了CdSe量子点和多孔Al2O3薄膜之间的光生电子转移效率,进而增强了多孔Al2O3薄膜界面的荧光。该研究结果可广泛应用于光伏、光显示、光传感及纳米生物成像等领域。
表面光学 表面增强荧光 CdSe/Al2O3异质结 TiN纳米粒子 CdSe量子点 扫描近场光学显微镜 
中国激光
2020, 47(9): 0913001
作者单位
摘要
郑州轻工业大学 电气信息工程学院, 河南 郑州 450000
利用贵金属纳米颗粒独特的物理特性, 设计具有信号放大功能的荧光适体传感器用于多巴胺的浓度检测。基于金属荧光增强效应通过在金纳米颗粒与荧光基团之间添加隔离层的手段实现荧光信号放大。将化学修饰了SH键的核酸适体与金纳米颗粒溶液混合, 形成稳定的Au-S键结构并与标记荧光基团的DNA互补链利用碱基互补配对原则结合。然后, 通过调节所设计的核酸适体5′所添加的碱基A的数量, 从而调节荧光基团与金纳米颗粒表面的距离。同时, 优化核酸适体与金纳米颗粒之间的浓度比以及所处的反应环境的pH值, 获得最佳的放大效率。最后对不同浓度的多巴胺进行测试。实验结果表明: 金纳米颗粒溶液与核酸适体在一定的浓度比之下, 在隔离层厚度为27个碱基A时, 最大的荧光增强倍数为2.35。多巴胺浓度检测的线性范围为20~100 nmol/L, 最低检测限为20 nmol/L。该传感器可以在纳米级有效调控隔离层厚度, 提供了一种稳定的信号放大策略。
生物传感器 金纳米颗粒 金属增强荧光效应 核酸适体 biosensor AuNPs Metal-Enhanced Fluorescence (MEF) aptamer 
光学 精密工程
2019, 27(9): 1943
作者单位
摘要
1 贵州大学大数据与信息工程学院,贵州贵阳 550025
2 贵州大学贵州省光电子技术及应用重点实验室,贵州贵阳 550025
利用 532 nm皮秒脉冲激光在金纳米光栅表面诱导表面等离子体激发 CdSe量子点荧光,并测量了 CdSe量子点荧光增强效应。分别采用 AFM刻蚀方法和自组装方法在硅基金膜表面制备了纳米光栅/CdSe量子点的多层薄膜结构。通过调节皮秒脉冲激光的功率,在显微拉曼平台上测量了 CdSe量子点的荧光光谱。结果表明,金纳米光栅 /CdSe量子点结构能够实现量子点远场荧光大幅增强,其最大荧光强度达 7.80倍,并在达到最大强度点开始迅速饱和。该研究结果可广泛应用于光电器件、生物医学检测研究等领域。
表面增强荧光 表面等离子体 金纳米光栅 CdSe量子点 自组装方法 皮秒激光 surface enhanced fluorescence surface plasmon gold nanograting CdSe QDs self-assembly method picosecend pulsed laser 
光电工程
2019, 46(5): 180464
作者单位
摘要
1 北京工业大学 激光工程研究院, 北京 100124
2 中国航天员科学研究训练中心 航天医学基础与应用重点实验室, 北京 100094
银纳米离子的SERS技术和SEF技术的信号检测灵敏度非常高, 可以用在微流控芯片的定量分析中。为了提高微流控芯片光学检测技术的检测精度, 提出一种在微通道中添加银纳米粒子来增强SYBR GreenⅠ拉曼和荧光信号的方法, 并对该方法的原理和增强效果进行了研究。首先, 利用准分子激光器在PMMA基板上直写刻蚀出宽200 μm、深68 μm的微通道, 接着将制备的银前体溶液加入微通道, 通过加热制备出表面增强拉曼(SERS)和表面增强荧光(SEF)基板, 接下来对添加银纳米粒子前后的拉曼和荧光信号分别进行对比, 进一步研究了微通道中不同浓度银纳米粒子对SYBR GREEN I的拉曼和荧光信号增强效果。添加银纳米粒子后, 表面增强拉曼(SERS)实验的增强因子为3.5×103, 添加银纳米粒子的样品的荧光信号强度与不含银纳米粒子样品的荧光信号强度相比, 约增加了1倍。结果表明, 在微通道中检测SYBR Green I时通过增加银纳米粒子显著地增强了拉曼和荧光信号, 这种方法可以用在以SYBR GreenⅠ做染料的微流控芯片检测技术中。
表面增强荧光 表面增强拉曼 微流控芯片 光学检测 surface enhanced fluorescence surface enhanced Raman microfluidic chip optical detection SYBR Green Ⅰ SYBR GreenⅠ 
发光学报
2018, 39(11): 1633
安西涛 1,*王月 1牟佳佳 2李静 1[ ... ]陈力 1
作者单位
摘要
1 长春工业大学 化学与生命科学学院, 材料科学高等研究院, 基础科学学院, 吉林 长春 130012
2 北华大学 物理学院, 吉林 吉林 132013
3 发光学及应用国家重点实验室 中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033
利用原位还原法成功制备了尺寸均一、超薄完整金壳包覆的NaYF4∶Yb,Er@SiO2@Au(NSA)纳米结构, 其XRD、TEM、EDX、HRTEM-HAADF、Mapping及吸收光谱表征结果表明, SiO2壳及纳米金壳的平均厚度分别约为5 nm和2 nm。在980 nm连续激光激发下, 系统研究了核壳结构的上转换荧光强度与氯金酸浓度的依赖关系。稳态光谱结果显示, NSA与仅SiO2包覆样品(NS)相比Er3+的红绿荧光强度均增强了~2.8倍。通过分析上转换荧光动力学过程及利用FDTD方法模拟, 讨论了表面等离激元增强上转换荧光的机制。
上转换发光 纳米金壳 表面等离激元 能量传递 表面增强荧光 upconversion luminescence gold nanoshell localized surface plasmon resonance energy transfer surface enhanced fluorescence 
发光学报
2018, 39(11): 1505
作者单位
摘要
西安邮电大学 电子工程学院 光电子技术系, 西安 710121
在外光场激励下, 金属纳米结构衬底表面所形成的集体电子振荡模式可有效调制其局域电磁场分布, 对居于衬底附近的荧光分子的荧光辐射产生调控。其影响因素主要取决于衬底金属表面所形成的电磁振荡模式和电磁场分布性质。归纳了光谱学中表面增强荧光效应研究的关键问题, 指出了周期性有序衬底金属增强荧光及其金属纳米颗粒增强荧光研究的主要研究进展。基于局域电磁场增强机理模型, 讨论了不同形貌衬底金属对荧光分子的荧光调控机理和影响因素。对表面增强荧光效应的研究前景进行了展望。
光谱学 表面增强荧光效应 局域电磁场增强 金属纳米结构 spectroscopy surface enhanced fluorescence local electromagnetic field enhancement metallic nanostructure 
激光技术
2018, 42(4): 511
王诗淼 1,2,3,*王晶 1刘军 1李儒新 1,2
作者单位
摘要
1 中国科学院上海光学精密机械研究所强场激光物理国家重点实验室, 上海 201800
2 中国科学院大学, 北京 100049
3 上海科技大学物质科学与技术学院, 上海 200031
金属增强荧光(MEF)理论一直是近年来研究的热点。通过研究光谱测量、细胞共聚焦成像和流式细胞术(FCM)等方法来定量分析不同长径比(3.1~6.5)的金纳米双锥对光敏剂铝酞菁(AlPcS)的荧光和光动力疗法(PDT)效果的增强效应。荧光光谱和共聚焦成像结果表明, 高长径比的金纳米双锥使铝酞菁的荧光强度大大增强, 最大增强因子为6; 低长径比的金纳米双锥由于其等离子共振带与铝酞菁的荧光带接近, 因此使铝酞菁的荧光强度大大降低。Hela细胞(人上皮宫颈癌细胞)的凋亡测定结果显示: 金纳米双锥的加入, 特别是高长径比的金纳米双锥的加入, 使得铝酞菁的载药率和产生单线态氧的能力提高, 从而降低了Hela细胞的存活率, 增强了铝酞菁的光动力疗法效果。本实验为表面增强荧光的研究提供了一个新的途径, 并扩展了金属纳米粒子在生命科学领域的应用。
医用光学 金属增强荧光 光动力疗法 金纳米双锥 等离子体共振 流式细胞术 
中国激光
2017, 44(6): 0607003

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!