人工晶体学报, 2023, 52 (2): 271, 网络出版: 2023-03-18  

射频磁控溅射法制备MoS2薄膜的最佳工艺参数研究

Optimal Process Parameters of Preparing MoS2 Films by RF Magnetron Sputtering
作者单位
河南工业大学理学院, 郑州 450001
摘要
采用射频(RF)磁控溅射法在石英衬底上制备了MoS2薄膜。通过正交试验研究了溅射时间、溅射温度、氩气流量和溅射功率对MoS2薄膜结构的影响。通过XRD、Raman、XPS、EDS和SEM对MoS2薄膜的结晶度、薄膜厚度和表面形貌进行分析,得到了制备MoS2薄膜的最佳工艺参数。发现溅射温度较高或较低结晶度都很差,在较低的溅射温度下样品的XRD衍射峰不明显。而当温度为250 ℃时,样品的XRD衍射峰较多,结晶度较好。根据正交试验法得出溅射温度对MoS2的结晶效果起着至关重要的作用,其次是氩气流量。当溅射温度为250 ℃,氩气流量为6 mL/min,溅射时间为30 min,溅射功率为300 W或400 W时,MoS2膜的结晶度较好。在这个条件下制备的膜较厚,但为以后的实验指明了方向。保持溅射温度、溅射功率和氩气流量不变,通过减少时间成功制备了厚度为58.9 nm的薄膜。
Abstract
MoS2 films were prepared on quartz substrate by radio frequency (RF) magnetron sputtering. The effect of sputtering time, sputtering temperature, argon flow rate and sputtering power on the structure of MoS2 films was studied by orthogonal test method. The crystallinity, thickness and surface morphology of MoS2 films were analyzed by XRD, Raman, XPS, EDS and SEM, the optimal process parameters for preparing MoS2 films were obtained. It is found that the crystallinity of the sample is poor at higher or lower sputtering temperature, and the XRD diffraction peak of the sample is not obvious at lower sputtering temperature. When the temperature is 250 ℃, the sample has more XRD diffraction peaks and better crystallinity. According to the orthogonal test, sputtering temperature plays a crucial role in the crystallization of MoS2, followed by argon flow rate. When sputtering temperature is 250 ℃, argon flow rate is 6 mL/min, sputtering time is 30 min, and sputtering power is 300 W or 400 W, the crystallinity of MoS2 film is better. The film prepared under this condition is thicker, but it points out the direction for future experiments. In the following experiments, sputtering temperature, sputtering power and argon flow rate can be kept unchanged. By shortening the time, films with a thickness of 58.9 nm have been successfully prepared.
参考文献

[1] LIU Y, WEISS N O, DUAN X D, et al. Van der Waals heterostructures and devices[J]. Nature Reviews Materials, 2016, 1: 16042.

[2] WANG K P, WANG J, FAN J T, et al. Ultrafast saturable absorption of two-dimensional MoS2 nanosheets[J]. ACS Nano, 2013, 7(10): 9260-9267.

[3] CHEN L X, WANG H M, TANG S J, et al. Edge control of graphene domains grown on hexagonal boron nitride[J]. Nanoscale, 2017, 9(32): 11475-11479.

[4] TIWARI P, JAISWAL J, CHANDRA R. Optical and electrical tunability in vertically aligned MoS2 thin films prepared by DC sputtering: role of film thickness[J]. Vacuum, 2022, 198: 110903.

[5] ZHOU K Q, GAO R, QIAN X D. Self-assembly of exfoliated molybdenum disulfide (MoS2) nanosheets and layered double hydroxide (LDH): towards reducing fire hazards of epoxy[J]. Journal of Hazardous Materials, 2017, 338: 343-355.

[6] SHI J, WU D, ZHENG X M, et al. From MoO2@MoS2 core-shell nanorods to MoS2 nanobelts[J]. Physica Status Solidi (b), 2018, 255(9): 1800254.

[7] SHI E Z, GAO Y, FINKENAUER B P, et al. Two-dimensional halide perovskite nanomaterials and heterostructures[J]. Chemical Society Reviews, 2018, 47(16): 6046-6072.

[8] HUSSAIN S, SHEHZAD M A, VIKRAMAN D, et al. Synthesis and characterization of large-area and continuous MoS2 atomic layers by RF magnetron sputtering[J]. Nanoscale, 2016, 8(7): 4340-4347.

[9] CAO X H, TAN C L, ZHANG X, et al. Solution-processed two-dimensional metal dichalcogenide-based nanomaterials for energy storage and conversion[J]. Advanced Materials, 2016, 28(29): 6167-6196.

[10] GOVINDASAMY M, CHEN S M, MANI V, et al. Molybdenum disulfide nanosheets coated multiwalled carbon nanotubes composite for highly sensitive determination of chloramphenicol in food samples milk, honey and powdered milk[J]. Journal of Colloid and Interface Science, 2017, 485: 129-136.

[11] KIM B H, YOON H, KWON S H, et al. Direct WS2 photodetector fabrication on a flexible substrate[J]. Vacuum, 2021, 184: 109950.

[12] CHO K, PAK J, CHUNG S, et al. Recent advances in interface engineering of transition-metal dichalcogenides with organic molecules and polymers[J]. ACS Nano, 2019, 13(9): 9713-9734.

[13] CHEN B, MENG Y H, SHA J W, et al. Preparation of MoS2/TiO2 based nanocomposites for photocatalysis and rechargeable batteries: progress, challenges, and perspective[J]. Nanoscale, 2017, 10(1): 34-68.

[14] GUNDA R K, NARALA S K R. Evaluation of friction and wear characteristics of electrostatic solid lubricant at different sliding conditions[J]. Surface and Coatings Technology, 2017, 332: 341-350.

[15] BARZEGAR M, IRAJI ZAD A, TIWARI A. On the performance of vertical MoS2 nanoflakes as a gas sensor[J]. Vacuum, 2019, 167: 90-97.

[16] LUKASZKOWICZ K, KUBACKI J, BALIN K, et al. Characteristics of CrAlSiN+MoS2 coating deposited by cathodic arc and magnetron sputtering process[J]. Vacuum, 2019, 163: 360-367.

[17] LIU X, MA G J, SUN G, et al. MoSx-Ta composite coatings on steel by D.C magnetron sputtering[J]. Vacuum, 2013, 89: 203-208.

[18] GRUBER W, HADJIAMINI NAJAFABADI H, GECKLE U, et al. Crystallization of magnetron sputtered amorphous Si1-xCx films (x=1/3) studied by grazing incidence X-ray diffractometry[J]. Philosophical Magazine, 2010, 90(29): 3855-3865.

[19] GONG C Y, XIAO J R, ZHU L W, et al. Crystal structure and tribological properties of molybdenum disulfide films prepared by magnetron sputtering technology[J]. Current Applied Physics, 2019, 19(12): 1318-1324.

[20] LEI G, GUO Y G, ZHU J G, et al. Sequential subspace optimization method for electromagnetic devices design with orthogonal design technique[J]. IEEE Transactions on Magnetics, 2012, 48(2): 479-482.

[21] ZHOU K Q, JIANG S H, BAO C L, et al. Preparation of poly(vinyl alcohol) nanocomposites with molybdenum disulfide (MoS2): structural characteristics and markedly enhanced properties[J]. RSC Advances, 2012, 2(31): 11695-11703.

[22] NAN H Y, WANG Z L, WANG W H, et al. Strong photoluminescence enhancement of MoS2 through defect engineering and oxygen bonding[J]. ACS Nano, 2014, 8(6): 5738-5745.

[23] LI H, ZHANG Q, YAP C C R, et al. From bulk to monolayer MoS2: evolution of Raman scattering[J]. Advanced Functional Materials, 2012, 22(7): 1385-1390.

[24] SIROTA B, GLAVIN N, VOEVODIN A A. Room temperature magnetron sputtering and laser annealing of ultrathin MoS2 for flexible transistors[J]. Vacuum, 2019, 160: 133-138.

[25] KARATA瘙塁 A, YILMAZ M. Molybdenum disulfide thin films fabrication from multi-phase molybdenum oxide using magnetron sputtering and CVD systems together[J]. Superlattices and Microstructures, 2020, 143: 106555.

[26] CAI S, GUO P, LIU J Z, et al. Friction and wear mechanism of MoS2/C composite coatings under atmospheric environment[J]. Tribology Letters, 2017, 65(3): 79.

[27] PRADHAN G, SHARMA A K. Temperature controlled 1T/2H phase ratio modulation in mono- and a few layered MoS2 films[J]. Applied Surface Science, 2019, 479: 1236-1245.

[28] MATSUURA K, OHASHI T, MUNETA I, et al. Low-carrier-density sputtered MoS2 film by vapor-phase sulfurization[J]. Journal of Electronic Materials, 2018, 47(7): 3497-3501.

[29] BURMAN D, SANTRA S, PRAMANIK P, et al. Pt decorated MoS2nanoflakes for ultrasensitive resistive humidity sensor[J]. Nanotechnology, 2018, 29(11): 115504.

[30] ZHANG K, YAO J X, ZUO X Q, et al. Interconnected molybdenum disulfide@tin disulfide heterojunctions with different morphologies: a type of enhanced counter electrode for dye-sensitized solar cells[J]. CrystEngComm, 2018, 20(9): 1252-1263.

[31] ZHAO J, HE Y Y, WANG Y F, et al. An investigation on the tribological properties of multilayer graphene and MoS2 nanosheets as additives used in hydraulic applications[J]. Tribology International, 2016, 97: 14-20.

[32] PIETRZYK B, MISZCZAK S, KACZMAREK , et al. Low friction nanocomposite aluminum oxide/MoS2 coatings prepared by sol-gel method[J]. Ceramics International, 2018, 44(7): 8534-8539.

[33] GANGOPADHYAY S, ACHARYA R, CHATTOPADHYAY A K, et al. Effect of substrate bias voltage on structural and mechanical properties of pulsed DC magnetron sputtered TiN-MoSx composite coatings[J]. Vacuum, 2010, 84(6): 843-850.

[34] XIAO J R, GONG C Y, QI M, et al. Effect of TiN/C microstructure composite layer on the adhesion of FDLC film onto silicon substrate[J]. Coatings, 2018, 8(1): 18.

张俊峰, 孙再征, 孔腾飞, 蔡根旺, 李亚平, 胡莎, 樊志琴. 射频磁控溅射法制备MoS2薄膜的最佳工艺参数研究[J]. 人工晶体学报, 2023, 52(2): 271. ZHANG Junfeng, SUN Zaizheng, KONG Tengfei, CAI Genwang, LI Yaping, HU Sha, FAN Zhiqin. Optimal Process Parameters of Preparing MoS2 Films by RF Magnetron Sputtering[J]. Journal of Synthetic Crystals, 2023, 52(2): 271.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!