吴易豪 1,2肖雪华 1,2毕然 1,2李雅丹 1,2[ ... ]王一丁 1,2
作者单位
摘要
1 吉林大学 电子科学与工程学院 集成光电子学国家重点联合实验室吉林大学实验区,长春 130012
2 吉林省红外气体传感技术工程研究中心,长春 130012
采用射频磁控溅射法在石英衬底和硒化锌衬底上制备了碲化铋薄膜,分别研究了薄膜厚度、退火温度对薄膜微观结构和光电性能的影响。利用X射线衍射仪、X射线光电子能谱仪和冷场发射扫描电子显微镜,分析了薄膜结构、成分和形貌。结果表明,退火有利于薄膜的结晶,且不改变晶体的择优取向。傅里叶变换红外光谱测试结果表明,在石英衬底和硒化锌衬底上沉积的薄膜,光学透过率随着薄膜厚度和退火温度的增加而减小,在硒化锌衬底上沉积的薄膜透过波段比石英长,且光学透过率更加稳定。霍尔效应测试结果表明,随着薄膜厚度和退火温度的增加,薄膜的电阻率逐渐减小,最小为1.448×10-3 Ω·cm,迁移率为27.400 cm2·V-1·s-1,载流子浓度为1.573×1020 cm-3。在石英衬底上沉积的15 nm厚的Bi2Te3薄膜,在1~5 μm波段的透过率达到80%,退火200 ℃后透过率达到60%,电阻率为5.663×10-3 Ω·cm。在硒化锌衬底上沉积相同厚度的薄膜,在2.5~20 μm波段的透过率达到65%,200 ℃退火后透过率达到60%,薄膜电阻率为9.919×10-3 Ω·cm。制备的Bi2Te3薄膜具有优良的光电特性,是红外透明导电薄膜领域理想的候选材料之一,在红外光电子学芯片制备领域有较好的应用前景。
透明导电薄膜 中红外波段 射频磁控溅射 Bi2Te3 光电性能 Transparent conductive film Mid infrared band Magnetron sputtering Bi2Te3 Photoelectric performance 
光子学报
2023, 52(10): 1052413
作者单位
摘要
宁波大学 高等技术研究院红外材料与器件实验室,宁波 315211
利用射频磁控溅射法制备了掺铒Ga2O3薄膜,研究了不同氧化铒靶溅射功率和不同退火温度下薄膜的发光特性,发现在氧化铒靶溅射功率为40 W以及退火温度达到600 ℃时薄膜显示出良好的光致发光强度。为了有效避免直接蚀刻掺铒薄膜层导致的表面粗糙等问题,设计了沟道型以及脊型掺铒Ga2O3薄膜波导结构,并使用紫外光刻和等离子蚀刻技术制备相应的平面波导,使用截断法测得4 μm宽的掺铒Ga2O3波导在1 310 nm处的光学损耗最小为1.26 dB/cm。实验结果表明掺铒Ga2O3波导作为片上光学放大器件具有良好的应用前景。
光学特性 掺铒波导 射频磁控溅射 Ga2O3 干法刻蚀 Optical properties Erbium-doped waveguide RF-magnetron sputtering Ga2O3 Dry etching 
光子学报
2023, 52(8): 0823003
作者单位
摘要
1 山东理工大学 化学化工学院,山东 淄博 255000
2 山东理工大学 物理与光电工程学院,山东 淄博 255000
采用射频磁控溅射方法在不同的溅射功率下制备了掺杂Ga元素的ZnO透明导电薄膜材料(ZnGa2O4, GZO),在GZO薄膜的制备过程中,溅射功率会对样品的组分配比产生影响,从而导致GZO薄膜的性能产生差异。文中利用皮秒激光诱导击穿光谱技术(PS-LIBS)对GZO薄膜进行了微烧蚀分析,对GZO薄膜的关键元素浓度比进行了快速定量分析研究。结果表明GZO薄膜的光学性能与元素谱线强度比之间存在一定的联系,随着溅射功率的增加,Zn/Ga的谱线强度比值与浓度比呈现出一致的变化,Ga元素的含量与样品的禁带宽度变化一致。同时,使用玻耳兹曼斜线法与斯塔克展宽法对等离子体温度与电子密度进行了计算。所有结果表明,PS-LIBS技术可以实现GZO薄膜关键组分配比的快速分析,为磁控溅射法制备GZO薄膜的工艺现场的快速性能分析、制备参数的实时优化提供了技术参考。
射频磁控溅射 皮秒激光诱导击穿光谱技术 等离子体温度 电子密度 定量分析 radio frequency magnetron sputtering picosecond laser induced breakdown spectroscopy plasma temperature electron density quantitative analysis 
红外与激光工程
2023, 52(3): 20220470
作者单位
摘要
河南工业大学理学院, 郑州 450001
采用射频(RF)磁控溅射法在石英衬底上制备了MoS2薄膜。通过正交试验研究了溅射时间、溅射温度、氩气流量和溅射功率对MoS2薄膜结构的影响。通过XRD、Raman、XPS、EDS和SEM对MoS2薄膜的结晶度、薄膜厚度和表面形貌进行分析,得到了制备MoS2薄膜的最佳工艺参数。发现溅射温度较高或较低结晶度都很差,在较低的溅射温度下样品的XRD衍射峰不明显。而当温度为250 ℃时,样品的XRD衍射峰较多,结晶度较好。根据正交试验法得出溅射温度对MoS2的结晶效果起着至关重要的作用,其次是氩气流量。当溅射温度为250 ℃,氩气流量为6 mL/min,溅射时间为30 min,溅射功率为300 W或400 W时,MoS2膜的结晶度较好。在这个条件下制备的膜较厚,但为以后的实验指明了方向。保持溅射温度、溅射功率和氩气流量不变,通过减少时间成功制备了厚度为58.9 nm的薄膜。
MoS2薄膜 射频磁控溅射 二维材料 正交试验法 工艺参数 MoS2 films RF magnetron sputtering two-dimensional material orthogonal test method process parameter 
人工晶体学报
2023, 52(2): 271
贺臣 1,*刘宏玉 1,2罗婧 1邓玮杰 1[ ... ]陈扬 1
作者单位
摘要
1 武汉科技大学理学院, 武汉430065
2 冶金工业过程系统科学湖北省重点实验室,武汉430065
为深入了解ZnMgO合金薄膜的结构与发光性能的关系,采用ZnO和MgO粉末球磨、冷压成型后再高温烧结的方式制靶,在石英基底上室温射频磁控溅射制备了Mg含量0%~8% (原子数分数) 的ZnMgO薄膜,然后于400 ℃空气退火。采用X射线衍射仪表征薄膜的晶体结构,场发射扫描电子显微镜及附带的X射线能谱仪(EDS)观测薄膜颗粒形貌和化学成分,荧光分光光度计测试光致发光(PL)谱。结果发现:ZnMgO合金膜为纤锌矿hcp结构的固溶体,随Mg含量增加,形貌由近似圆形变为圆形和无规则多边形混合型,原因是(002)晶厚失去主导且长大速率被(101)和(110)超过;PL谱出现一个强的紫光峰(390~393 nm)和一个微弱的近红外峰(758~765 nm);随Mg含量的增加,紫光峰位先蓝移后红移,近红外峰位则发生红移;400 ℃空气退火后,所有峰位红移,强度显著增大。对退火处理前后出现的紫光峰和近红外峰的来源和变化规律进行了机制探讨。
薄膜 Mg掺杂 表面形貌 光致发光 退火 射频磁控溅射 ZnO ZnO thin film Mg doping surface morphology photoluminescence annealing radio frequency magnetron sputtering 
人工晶体学报
2022, 51(12): 2071
作者单位
摘要
1 哈尔滨工业大学物理学院, 哈尔滨 150001
2 哈尔滨工业大学, 特种环境复合材料技术国家级重点实验室, 哈尔滨 150001
随着光通信技术与光子集成电路的发展, 非互易性器件作为光通信系统中重要的组成部分得到了越来越广泛的研究与应用。基于磁光效应制成的磁光隔离器和环行器是目前应用最为广泛的非互易性器件, 为了将非互易性器件整块集成在硅片上, 需制备性能与块状磁光材料相当的磁光薄膜。在近红外通信波段(1 550 nm), 以钇铁石榴石(Y3Fe5O12, YIG)为代表的稀土铁石榴石(RIG)具备优良的磁光效应, 是最具应用前景的磁光材料之一。研究发现, 使用稀土离子对YIG薄膜进行掺杂可以有效改善其磁光性能, 尤其是Bi3+和Ce3+掺杂的YIG表现出巨法拉第效应。本文首先介绍了法拉第效应原理, 介绍了三种常见磁光薄膜的生长方法, 回顾了近年来的主要研究成果, 介绍了磁光薄膜在光隔离器和环行器中的应用, 最后对磁光薄膜的未来发展趋势进行了展望。
磁光薄膜 稀土铁石榴石 钇铁石榴石 脉冲激光沉积 液相外延 射频磁控溅射 磁光隔离器 法拉第效应 magneto-optical thin film rare earth iron garnet yttrium iron garnet pulsed laser deposition liquid phase epitaxy radio frequency magnetron sputtering magneto-optical isolator Faraday effect 
人工晶体学报
2022, 51(9-10): 1659
作者单位
摘要
1 五邑大学应用物理与材料学院,江门 529020
2 广东省科学院中乌焊接研究所,广州 510651
采用射频磁控溅射技术在硅衬底上制备了锰钴镍氧(Mn-Co-Ni-O, MCNO)薄膜并进行了后退火处理。利用X射线衍射、扫描电子显微镜、光学测试仪器等测试手段对晶体结构、表面形貌及光学性能进行表征。分析了不同射频溅射功率(60~100 W)对MCNO薄膜表面微观形貌、晶体结构和光学性能的影响。结果表明,在60~90 W下获得的薄膜表面致密且均匀,但在100 W下获得的MCNO薄膜表面晶粒尺寸显著增大。物相分析表明,采用射频磁控溅射沉积的MCNO薄膜主要为尖晶石结构,溅射功率对薄膜结晶质量和择优取向具有显著影响,在80 W下获得的MCNO薄膜结晶质量最佳。同时,拉曼光谱测试也表明该MCNO薄膜表现出最强的Mn4+-O对称弯曲振动和最小的压应力。紫外-可见-近红外光谱分析表明,MCNO薄膜的吸光范围主要在可见光-近红外波段,在80~90 W溅射功率下获得的MCNO薄膜在近红外波段表现出更强的吸收峰。射频溅射功率的改变会影响薄膜的厚度和结晶质量,从而对薄膜的光学带隙起到调控作用。光致发光光谱测试不同溅射功率下薄膜的缺陷峰发光强度,且在功率为80 W时沉积的薄膜具有最强紫外发射峰,表明改变溅射功率能够有效改善薄膜缺陷及提高晶体质量。
锰钴镍氧薄膜 射频磁控溅射 后退火 溅射功率 结构性能 光学性能 manganese cobalt nickel oxide thin film radio frequency magnetron sputtering post-annealing sputtering power structural property optical propery 
人工晶体学报
2022, 51(8): 1361
作者单位
摘要
1 天津大学理学院,天津 300354
2 天津市低维功能材料物理与制备技术重点实验室,天津 300350
在不同氧气流量下,采用双靶射频磁控共溅射的方法在蓝宝石(α-Al2O3)基底上制备得到系列掺Cr的Ga2O3(Ga2O3∶Cr)薄膜,详细研究了薄膜在900 ℃退火前后的结构和光学性能。结果表明,未退火的Ga2O3∶Cr薄膜为非晶结构,其发光主要位于蓝绿波段。经900 ℃退火后,薄膜的结构由非晶变为多晶,且在近红外波段观测到了来源于Cr3+掺杂的发光。退火后的薄膜结晶质量和近红外发光均与氧气流量密切相关,而其光学带隙不受氧气流量的影响。在所研究的氧气流量范围,4 mL/min氧气流量下薄膜的近红外发光强度最强,这与此条件下薄膜结晶质量较好以及Cr3+替代Ga3+的数量较多有关。以上研究成果可为制备高质量Ga2O3∶Cr薄膜提供参考。
Ga2O3∶Cr薄膜 射频磁控溅射 蓝宝石基底 氧气流量 退火 光学性能 结晶质量 Ga2O3∶Cr thin film RF magnetron sputtering sapphire substrate oxygen flow rate annealing optical property crystalline quality 
人工晶体学报
2022, 51(8): 1353
作者单位
摘要
1 五邑大学 应用物理与材料学院,广东 江门 529020
2 广东省科学院 中乌焊接研究所,广东 广州 510651
采用高真空射频磁控溅射法在硅Si(111)衬底上沉积氧化镓(β?Ga2O3),开展了溅射温度对Ga2O3微观结构及光学性能影响的研究,利用 X 射线衍射、扫描电子显微镜、荧光光谱仪等测试手段对Ga2O3晶体结构、表面形貌及光学性能进行表征分析。实验结果表明,在高纯Ar气环境下,所沉积的Ga2O3形貌差异与不同溅射温度下Ga2O3生长机理有关,当溅射温度达到300 ℃时,Ga2O3发生热分解,形成金属Ga团簇;当溅射温度达到400 ℃时,金属Ga团簇作为催化剂触发Ga2O3纳米线的自催化生长。光致发光(PL)光谱中,Ga2O3样品在300~700 nm波长范围内显示出4个位于紫光、蓝光、绿光区域的发射峰,在溅射温度为400 ℃下形成的Ga2O3纳米线发射峰显著增强,并且发生轻微的蓝移,纳米结构中较大的比表面积以及量子尺寸效应对Ga2O3的荧光发射(PL)性能具有重要影响。拉曼光谱(Raman)显示,随着溅射温度升高,Ga2O3晶体质量有所提高;在溅射温度为400 ℃下形成的纳米线出现新的拉曼振动模式,并且发生18 cm-1的蓝移。
射频磁控溅射 Ga2O3 结构性能 光学性能 RF magnetron sputtering gallium oxide structural properties optical properties 
发光学报
2022, 43(8): 1236
作者单位
摘要
1 武汉大学 物理科学与技术学院 湖北省核固体物理重点实验室, 武汉 430072
2 武汉长弢新材料有限公司, 武汉 430000
通过控制室温下射频磁控溅射过程中不同的氩气工作气压、溅射功率和沉积时间,在石英玻璃上沉积Al掺杂ZnO(AZO)薄膜,探究了三种工艺条件对制备的AZO薄膜的微结构及光电性能的影响。所制备的AZO薄膜经500℃退火后均为六方纤锌矿结构,具有优异的透明度,在可见光范围内的平均透过率均在86%以上。在气压0.25Pa、功率200W下,溅射时间为10min时,薄膜的电阻率低至5.04×10-3Ω·cm,而溅射时间为15min时,Haacke性能指数最优,为0.314×10-3Ω-1。结果表明,磁控溅射制备的AZO薄膜的晶体结构、方阻和透过率等特性与制备过程中的气压、功率和时间密切相关,通过评价性能指数可指导优化AZO薄膜的制备工艺。
AZO透明导电薄膜 射频磁控溅射 室温 气压 功率 沉积时间 AZO transparent conductive film RF magnetron sputtering room temperature pressure power deposition time 
半导体光电
2022, 43(3): 561

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!