光电工程, 2023, 50 (3): 220048, 网络出版: 2023-05-04   

飞秒激光双光子聚合三维微纳结构加工技术 下载: 682次

Femtosecond laser two-photon polymerization three-dimensional micro-nanofabrication technology
作者单位
1 暨南大学 光子技术研究院 广东省光纤传感与通信技术重点实验室,广东 广州 511443
2 中国科学院理化技术研究所 仿生智能界面科学中心 有机纳米光子学实验室,北京 100190
引用该论文

赵圆圆, 金峰, 董贤子, 郑美玲, 段宣明. 飞秒激光双光子聚合三维微纳结构加工技术[J]. 光电工程, 2023, 50(3): 220048.

Yuanyuan Zhao, Feng Jin, Xianzi Dong, Meiling Zheng, Xuanming Duan. Femtosecond laser two-photon polymerization three-dimensional micro-nanofabrication technology[J]. Opto-Electronic Engineering, 2023, 50(3): 220048.

参考文献

[1] Pimpin A, Srituravanich WReview on micro- and nanolithography techniques and their applicationsEng J2012161375610.4186/ej.2012.16.1.37

[2] Rothschild MProjection optical lithographyMater Today200582182410.1016/S1369-7021(05)00698-X

[3] Fay BAdvanced optical lithography development, from UV to EUVMicroelectron Eng200261-62112410.1016/S0167-9317(02)00427-6

[4] Silverman J PChallenges and progress in x-ray lithographyJ Vac Sci Technol B Microelectron Nanometer Struct Process, Meas, Phenom19981663137314110.1116/1.590452

[5] Vieu C, Carcenac F, Pépin A, et alElectron beam lithography: resolution limits and applicationsAppl Surf Sci20001641-411111710.1016/S0169-4332(00)00352-4

[6] Manfrinato V R, Zhang L H, Su D, et alResolution limits of electron-beam lithography toward the atomic scaleNano Lett20131341555155810.1021/nl304715p

[7] Watt F, Bettiol A A, Van Kan J A, et alIon beam lithography and nanofabrication: a reviewInt J Nanosci20054326928610.1142/S0219581X05003139

[8] Guo L JNanoimprint lithography: methods and material requirementsAdv Mater200719449551310.1002/adma.200600882

[9] Cox L M, Martinez A M, Blevins A K, et alNanoimprint lithography: emergent materials and methods of actuationNano Today20203110083810.1016/j.nantod.2019.100838

[10] Pan D ZDirected self-assembly for advanced chipsNat Electron201811053053110.1038/s41928-018-0152-7

[11] 董贤子, 陈卫强, 赵震声, 等飞秒脉冲激光双光子微纳加工技术及其应用科学通报200853121310.3321/j.issn:0023-074X.2008.01.002

    Dong X Z, Chen W Q, Zhao Z S, et alFemtosecond laser two-photon micro-/nano-fabrication and its applicationsChin Sci Bull200853121310.3321/j.issn:0023-074X.2008.01.002

[12] Sun S F, Wang P PMicro/nano structures fabricated by two-photon photopolymerization of femtosecond laserInfrared Laser Eng20184712120600910.3788/IRLA201847.1206009

    孙树峰, 王萍萍飞秒激光双光子聚合加工微纳结构红外与激光工程20184712120600910.3788/IRLA201847.1206009

[13] Zhang Y L, Chen Q D, Xia H, et alDesignable 3D nanofabrication by femtosecond laser direct writingNano Today20105543544810.1016/j.nantod.2010.08.007

[14] Fourkas J TNanoscale photolithography with visible lightJ Phys Chem Lett2010181221122710.1021/jz1002082

[15] 赵圆圆. 微尺度结构的功能化及其集成制备技术研究[D]. 北京: 中国科学院大学, 2016.

    Zhao Y Y. Research on functionalization of microscale structures and their integrated fabrication technology[D]. Beijing: University of Chinese Academy of Sciences, 2016

[16] 郑美玲, 金峰, 董贤子, 等双光子光聚合与功能微纳结构制备影像科学与光化学201735441342810.7517/j.issn.1674-0475.2017.04.006

    Zheng M L, Jin F, Dong X Z, et alTwo-photon photopolymerization and functional micro/nanostructure fabricationImag Sci Photochem201735441342810.7517/j.issn.1674-0475.2017.04.006

[17] Hohmann J K, Renner M, Waller E H, et alThree-dimensional μ-printing: an enabling technologyAdv Opt Mater20153111488150710.1002/adom.201500328

[18] Maruo S, Nakamura O, Kawata SThree-dimensional microfabrication with two-photon-absorbed photopolymerizationOpt Lett199722213213410.1364/OL.22.000132

[19] Kawata S, Sun H B, Tanaka T, et alFiner features for functional microdevicesNature2001412684869769810.1038/35089130

[20] Li L J, Fourkas J TMultiphoton polymerizationMater Today2007106303710.1016/S1369-7021(07)70130-X

[21] Lu W E, Dong X Z, Chen W Q, et alNovel photoinitiator with a radical quenching moiety for confining radical diffusion in two-photon induced photopolymerizationJ Mater Chem201121155650565910.1039/c0jm04025h

[22] Layani M, Wang X F, Magdassi SNovel materials for 3D printing by photopolymerizationAdv Mater20183041170634410.1002/adma.201706344

[23] Arnoux C, Konishi T, Van Elslande E, et alPolymerization photoinitiators with near-resonance enhanced two-photon absorption cross-Section: toward high-resolution photoresist with improved sensitivityMacromolecules202053219264927810.1021/acs.macromol.0c01518

[24] Cônsoli P M, Otuka A J G, Balogh D T, et alFeature size reduction in two‐photon polymerization by optimizing resin compositionJ Polym Sci Part B Polym Phys201856161158116310.1002/polb.24635

[25] Malinauskas M, Žukauskas A, Bičkauskaitė G, et alMechanisms of three-dimensional structuring of photo-polymers by tightly focussed femtosecond laser pulsesOpt Express20101810102091022110.1364/OE.18.010209

[26] Jeong H Y, Lee E, An S C, et al3D and 4D printing for optics and metaphotonicsNanophotonics2020951139116010.1515/nanoph-2019-0483

[27] Xiong C, Liao C R, Li Z Y, et alOptical fiber integrated functional micro-/nanostructure induced by two-Photon polymerizationFront Mater2020758649610.3389/fmats.2020.586496

[28] Koo SAdvanced micro-actuator/robot fabrication using ultrafast laser direct writing and its remote controlAppl Sci20201023856310.3390/app10238563

[29] Harinarayana V, Shin Y CTwo-photon lithography for three-dimensional fabrication in micro/nanoscale regime: a comprehensive reviewOpt Laser Technol202114210718010.1016/j.optlastec.2021.107180

[30] Otuka A J G, Tomazio N B, Paula K T, et alTwo-photon polymerization: functionalized microstructures, micro-resonators, and bio-scaffoldsPolymers20211312199410.3390/polym13121994

[31] Göppert-Mayer MElementary processes with two quantum transitionsAnn Phys20095217-846647910.1002/andp.200952107-804

[32] Kaiser W, Garrett C G BTwo-photon excitation in CaF2: Eu2+Phys Rev Lett19617622923110.1103/PhysRevLett.7.229

[33] Wloka T, Gottschaldt M, Schubert U SFrom light to structure: photo initiators for radical two‐photon polymerizationChem–Eur J20222832e20210419110.1002/chem.202104191

[34] Mukherjee ATwo-photon pumped upconverted lasing in dye doped polymer waveguidesAppl Phys Lett199362263423342510.1063/1.109036

[35] Watanabe M, Juodkazis S, Sun H B, et alTwo-photon readout of three-dimensional memory in silicaAppl Phys Lett2000771131510.1063/1.126861

[36] Yamasaki K, Juodkazis S, Watanabe M, et alRecording by microexplosion and two-photon reading of three-dimensional optical memory in polymethylmethacrylate filmsAppl Phys Lett20007681000100210.1063/1.125919

[37] Kirkpatrick S M, Baur J W, Clark C M, et alHolographic recording using two-photon-induced photopolymerizationAppl Phys A199969446146410.1007/s003390051033

[38] Strickler J H, Webb W WThree-dimensional optical data storage in refractive media by two-photon point excitationOpt Lett199116221780178210.1364/OL.16.001780

[39] Sun H B, Tanaka T, Takada K, et alTwo-photon photopolymerization and diagnosis of three-dimensional microstructures containing fluorescent dyesAppl Phys Lett200179101411141310.1063/1.1399312

[40] Diaspro A, Robello MTwo-photon excitation of fluorescence for three-dimensional optical imaging of biological structuresJ Photochem Photobiol B Biol20005511810.1016/S1011-1344(00)00028-2

[41] Kuebler S M, Rumi M, Watanabe T, et alOptimizing two-photon initiators and exposure conditions for three-dimensional lithographic microfabricationJ Photopolym Sci Technol200114465766810.2494/photopolymer.14.657

[42] Sun H B, Kawata STwo-photon laser precision microfabrication and its applications to micro-nano devices and systemsJ Lightw Technol200321362463310.1109/JLT.2003.809564

[43] Liaros N, Fourkas J TThe characterization of absorptive nonlinearitiesLaser Photonics Rev2017115170010610.1002/lpor.201700106

[44] Liaros N, Fourkas J TMethods for determining the effective order of absorption in radical multiphoton photoresists: a critical analysisLaser Photonics Rev2021151200020310.1002/lpor.202000203

[45] Baldacchini T. Three-Dimensional Microfabrication Using Two-Photon Polymerization: Fundamentals, Technology, and Applications[M]. Amsterdam: Elsevier, 2015.

[46] Skliutas E, Lebedevaite M, Kabouraki E, et alPolymerization mechanisms initiated by spatio-temporally confined lightNanophotonics20211041211124210.1515/nanoph-2020-0551

[47] Bauhofer A. Multiscale effects of photochemical shrinkage in direct laser writing[D]. Zurich: ETH Zurich, 2019.

[48] Schafer K J, Hales J M, Balu M, et alTwo-photon absorption cross-sections of common photoinitiatorsJ Photoch Photobio A Chem20041622-349750210.1016/S1010-6030(03)00394-0

[49] Fischer J, Mueller J B, Kaschke J, et alThree-dimensional multi-photon direct laser writing with variable repetition rateOpt Express20132122262442626010.1364/OE.21.026244

[50] Parkatzidis K, Kabouraki E, Selimis A, et alInitiator-free, multiphoton polymerization of gelatin methacrylamideMacromol Mater Eng201830312180045810.1002/mame.201800458

[51] Lebedevaite M, Ostrauskaite J, Skliutas E, et alPhotoinitiator free resins composed of plant-derived monomers for the optical µ-3D printing of thermosetsPolymers201911111610.3390/polym11010116

[52] Stuart B C, Feit M D, Herman S, et alNanosecond-to-femtosecond laser-induced breakdown in dielectricsPhy Rev B19965341749176110.1103/PhysRevB.53.1749

[53] Hankin S M, Villeneuve D M, Corkum P B, et alNonlinear ionization of organic molecules in high intensity laser fieldsPhys Rev Lett200084225082508510.1103/PhysRevLett.84.5082

[54] 马文超, 邱迎昕基于光聚合技术的3D打印材料及未来发展方向广东化工20194610919210.3969/j.issn.1007-1865.2019.10.038

    Ma W C, Qiu Y XMechanisms and future direction of 3D printing using photopolymerizationGuangdong Chem Ind20194610919210.3969/j.issn.1007-1865.2019.10.038

[55] Kiefer P, Hahn V, Nardi M, et alSensitive photoresists for rapid multiphoton 3D laser micro-and nanoprintingAdv Opt Mater2020819200089510.1002/adom.202000895

[56] Carlotti M, Mattoli VFunctional materials for two‐photon polymerization in microfabricationSmall20191540190268710.1002/smll.201902687

[57] Serbin J, Egbert A, Ostendorf A, et alFemtosecond laser-induced two-photon polymerization of inorganic–organic hybrid materials for applications in photonicsOpt Lett200328530130310.1364/OL.28.000301

[58] Doğruyol Z, Arsu N, Doğruyol S K, et alProducing critical exponents from gelation for various photoinitiator concentrations; a photo differential scanning calorimetric studyProg Org Coat201274118118510.1016/j.porgcoat.2011.12.007

[59] Goodner M D, Bowman C NModeling primary radical termination and its effects on autoacceleration in photopolymerization kineticsMacromolecules199932206552655910.1021/ma9901947

[60] Williams C G, Malik A N, Kim T K, et alVariable cytocompatibility of six cell lines with photoinitiators used for polymerizing hydrogels and cell encapsulationBiomaterials200526111211121810.1016/j.biomaterials.2004.04.024

[61] Winter H H, Chambon FAnalysis of linear viscoelasticity of a crosslinking polymer at the gel pointJ Rheol198630236738210.1122/1.549853

[62] Friedrich C, Heymann LExtension of a model for crosslinking polymer at the gel pointJ Rheol198832323524110.1122/1.549971

[63] Schwärzle D, Hou X, Prucker O, et alPolymer microstructures through two‐photon crosslinkingAdv Mater20172939170346910.1002/adma.201703469

[64] Anseth K S, Bowman C N, Peppas N APolymerization kinetics and volume relaxation behavior of photopolymerized multifunctional monomers producing highly crosslinked networksJ Polym Sci Part A Polym Chem199432113914710.1002/pola.1994.080320116

[65] Decker C, Jenkins A DKinetic approach of oxygen inhibition in ultraviolet-and laser-induced polymerizationsMacromolecules19851861241124410.1021/ma00148a034

[66] Cicha K, Li Z Q, Stadlmann K, et alEvaluation of 3D structures fabricated with two-photon-photopolymerization by using FTIR spectroscopyJ Appl Phys2011110606491110.1063/1.3639304

[67] Jiang L J, Zhou Y S, Xiong W, et alTwo-photon polymerization: investigation of chemical and mechanical properties of resins using Raman microspectroscopyOpt Lett201439103034303710.1364/OL.39.003034

[68] Burmeister F, Steenhusen S, Houbertz R, et alMaterials and technologies for fabrication of three-dimensional microstructures with sub-100 nm feature sizes by two-photon polymerizationJ Laser Appl201224404201410.2351/1.4730807

[69] Tanaka T, Sun H B, Kawata SRapid sub-diffraction-limit laser micro/nanoprocessing in a threshold material systemAppl Phys Lett200280231231410.1063/1.1432450

[70] Odian G. Principles of Polymerization[M]. 4th ed. Hoboken: John Wiley & Sons, 2004.

[71] Yang L, Münchinger A, Kadic M, et alOn the schwarzschild effect in 3D two-photon laser lithographyAdv Opt Mater2019722190104010.1002/adom.201901040

[72] Muller J B. Exploring the mechanisms of Three-Dimensional direct laser writing by multi-photon polymerization[D]. Karlsruhe: Karlsruher Institut für Technologie, 2015.

[73] Wang S H, Yu Y, Liu H L, et alSub-10-nm suspended nano-web formation by direct laser writingNano Futures20182202500610.1088/2399-1984/aabb94

[74] 宋旸, 董贤子, 赵震声, 等飞秒激光双光子加工的极限分辨力强激光与粒子束20112371780178410.3788/HPLPB20112307.1780

    Song Y, Dong X Z, Zhao Z S, et alInvestigation into ultimate resolution by femtosecond laser two-photon fabrication techniqueHigh Power Laser Part Beams20112371780178410.3788/HPLPB20112307.1780

[75] 张心正, 夏峰, 许京军激光超衍射加工机理与研究进展物理学报201766414420710.7498/aps.66.144207

    Zhang X Z, Xia F, Xu J JThe mechanisms and research progress of laser fabrication technologies beyond diffraction limitActa Phys Sin201766414420710.7498/aps.66.144207

[76] Zhou X Q, Hou Y H, Lin J QA review on the processing accuracy of two-photon polymerizationAIP Adv20155303070110.1063/1.4916886

[77] Fischer J. Three-dimensional optical lithography beyond the diffraction limit[D]. Verlag Nicht Ermittelbar, 2012.

[78] Adão R M R, Alves T L, Maibohm C, et alTwo-photon polymerization simulation and fabrication of 3D microprinted suspended waveguides for on-chip optical interconnectsOpt Express20223069623964210.1364/OE.449641

[79] Pikulin A, Bityurin NSpatial resolution in polymerization of sample features at nanoscalePhys Rev B2007751919543010.1103/PhysRevB.75.195430

[80] Li W, Cao T X, Zhai Z H, et alInfluence of evanescent waves on the voxel profile in multipulse multiphoton polymerization nanofabricationNanotechnology2013242121530110.1088/0957-4484/24/21/215301

[81] He Z Q, Lee Y H, Gou F W, et alPolarization-independent phase modulators enabled by two-photon polymerizationOpt Express20172526336883369410.1364/OE.25.033688

[82] Zandrini T, Liaros N, Jiang L J, et alEffect of the resin viscosity on the writing properties of two-photon polymerizationOpt Mater Express2019962601261610.1364/OME.9.002601

[83] Cao D Z, Ge G J, Wang K GTwo-photon subwavelength lithography with thermal lightAppl Phys Lett201097505110510.1063/1.3472112

[84] Mueller J B, Fischer J, Mange Y J, et alIn-situ local temperature measurement during three-dimensional direct laser writingAppl Phys Lett20131031212310710.1063/1.4821556

[85] Hu Z Y, Sun Y L, Hua J G, et alFemtosecond laser nano-fabrication with extended processing rangeIEEE Photonics Technol Lett201931213313610.1109/LPT.2018.2884568

[86] Obata K, El-Tamer A, Koch L, et alHigh-aspect 3D two-photon polymerization structuring with widened objective working range (WOW-2PP)Light Sci Appl2013212e11610.1038/lsa.2013.72

[87] Chu W, Tan Y X, Wang P, et alCentimeter‐height 3D printing with femtosecond laser two-photon polymerizationAdv Mater Technol201835170039610.1002/admt.201700396

[88] Klar T A, Wollhofen R, Jacak JSub-Abbe resolution: from STED microscopy to STED lithographyPhys Scr20142014T162014049

[89] Fischer J, Mueller J B, Quick A S, et alExploring the mechanisms in STED-enhanced direct laser writingAdv Opt Mater20153222123210.1002/adom.201400413

[90] Cheng H, Golvari P, Xia C, et alHigh-throughput microfabrication of axially tunable helicesPhotonics Res202210230331510.1364/PRJ.439592

[91] Yang L, Qian D D, Xin C, et alTwo-photon polymerization of microstructures by a non-diffraction multifoci pattern generated from a superposed Bessel beamOpt Lett201742474374610.1364/OL.42.000743

[92] Vizsnyiczai G, Kelemen L, Ormos PHolographic multi-focus 3D two-photon polymerization with real-time calculated hologramsOpt Express20142220242172422310.1364/OE.22.024217

[93] Manousidaki M, Papazoglou D G, Farsari M, et al3D holographic light shaping for advanced multiphoton polymerizationOpt Lett2020451858810.1364/OL.45.000085

[94] Jenness N J, Wulff K D, Johannes M S, et alThree-dimensional parallel holographic micropatterning using a spatial light modulatorOpt Express20081620159421594810.1364/OE.16.015942

[95] Lin H, Jia B H, Gu MDynamic generation of Debye diffraction-limited multifocal arrays for direct laser printing nanofabricationOpt Lett201136340640810.1364/OL.36.000406

[96] Obata K, Koch J, Hinze U, et alMulti-focus two-photon polymerization technique based on individually controlled phase modulationOpt Express20101816171931720010.1364/OE.18.017193

[97] Sun H B, Tanaka T, Kawata SThree-dimensional focal spots related to two-photon excitationAppl Phys Lett200280203673367510.1063/1.1478128

[98] Takada K, Sun H B, Kawata SImproved spatial resolution and surface roughness in photopolymerization-based laser nanowritingAppl Phys Lett200586707112210.1063/1.1864249

[99] Takada K, Sun H B, Kawata SThe study on spatial resolution in two-photon induced polymerizationProc SPIE2006611061100A

[100] Xing J F, Dong X Z, Chen W Q, et alImproving spatial resolution of two-photon microfabrication by using photoinitiator with high initiating efficiencyAppl Phys Lett2007901313110610.1063/1.2717532

[101] Emons M, Obata K, Binhammer T, et alTwo-photon polymerization technique with sub-50 nm resolution by sub-10 fs laser pulsesOpt Mater Express20122794294710.1364/OME.2.000942

[102] Haske W, Chen V W, Hales J M, et al65 nm feature sizes using visible wavelength 3-D multiphoton lithographyOpt Express20071563426343610.1364/OE.15.003426

[103] Dong X Z, Zhao Z S, Duan X MImproving spatial resolution and reducing aspect ratio in multiphoton polymerization nanofabricationAppl Phys Lett200892909111310.1063/1.2841042

[104] Juodkazis S, Mizeikis V, Seet K K, et alTwo-photon lithography of nanorods in SU-8 photoresistNanotechnology200516684684910.1088/0957-4484/16/6/039

[105] Tan D F, Li Y, Qi F J, et alReduction in feature size of two-photon polymerization using SCR500Appl Phys Lett200790707110610.1063/1.2535504

[106] Jin F, Liu J, Zhao Y Y, et alλ/30 inorganic features achieved by multi-photon 3D lithographyNat Commun2022131135710.1038/s41467-022-29036-7

[107] Fischer J, Wegener MThree-dimensional direct laser writing inspired by stimulated-emission-depletion microscopy [Invited]Opt Mater Express20111461462410.1364/OME.1.000614

[108] Fischer J, Wegener MThree-dimensional optical laser lithography beyond the diffraction limitLaser Photonics Rev201371224410.1002/lpor.201100046

[109] Cao Y Y, Xie F, Zhang P D, et alDual-beam super-resolution direct laser writing nanofabrication technologyOpto-Electron Eng201744121133114510.3969/j.issn.1003-501X.2017.12.001

    曹耀宇, 谢飞, 张鹏达, 等双光束超分辨激光直写纳米加工技术光电工程201744121133114510.3969/j.issn.1003-501X.2017.12.001

[110] Li L J, Gattass R R, Gershgoren E, et alAchieving λ/20 resolution by one-color initiation and deactivation of polymerizationScience2009324592991091310.1126/science.1168996

[111] Fischer J, Von Freymann G, Wegener MThe materials challenge in diffraction-unlimited direct-laser-writing optical lithographyAdv Mater201022323578358210.1002/adma.201000892

[112] Wollhofen R, Katzmann J, Hrelescu C, et al120 nm resolution and 55 nm structure size in STED-lithographyOpt Express2013219108311084010.1364/OE.21.010831

[113] Gan Z S, Cao Y Y, Evans R A, et alThree-dimensional deep sub-diffraction optical beam lithography with 9 nm feature sizeNat Commun201341206110.1038/ncomms3061

[114] Park S H, Lee S H, Yang D Y, et alSubregional slicing method to increase three-dimensional nanofabrication efficiency in two-photon polymerizationAppl Phys Lett2005871515410810.1063/1.2103393

[115] Yang H, Zhao Y Y, Zheng M L, et alStepwise optimized 3D printing of arbitrary 3D structures at millimeter scale with high precision surfaceMacromol Mater Eng201930411190040010.1002/mame.201900400

[116] Sun H B, Nakamura A, Shoji S, et alThree-dimensional nanonetwork assembled in a photopolymerized rod arrayAdv Mater200315232011201410.1002/adma.200305285

[117] Kuroiwa Y, Takeshima N, Narita Y, et alArbitrary micropatterning method in femtosecond laser microprocessing using diffractive optical elementsOpt Express20041291908191510.1364/OPEX.12.001908

[118] Kato J I, Takeyasu N, Adachi Y, et alMultiple-spot parallel processing for laser micronanofabricationAppl Phys Lett200586404410210.1063/1.1855404

[119] Matsuo S, Juodkazis S, Misawa HFemtosecond laser microfabrication of periodic structures using a microlens arrayAppl Phys A200580468368510.1007/s00339-004-3108-x

[120] Dong X Z, Zhao Z S, Duan X MMicronanofabrication of assembled three-dimensional microstructures by designable multiple beams multiphoton processingAppl Phys Lett2007911212410310.1063/1.2789661

[121] Ritschdorff E T, Nielson R, Shear J BMulti-focal multiphoton lithographyLab Chip201212586787110.1039/c2lc21271d

[122] Yan W S, Cumming B P, Gu MHigh-throughput fabrication of micrometer-sized compound parabolic mirror arrays by using parallel laser direct-write processingJ Opt201517707580310.1088/2040-8978/17/7/075803

[123] Hahn V, Kiefer P, Frenzel T, et alRapid assembly of small materials building blocks (voxels) into large functional 3D metamaterialsAdv Funct Mater20203026190779510.1002/adfm.201907795

[124] Lin W, Chen D H, Chen S CEmerging micro-additive manufacturing technologies enabled by novel optical methodsPhotonics Res20208121827184210.1364/PRJ.404334

[125] Geng Q, Wang D E, Chen P F, et alUltrafast multi-focus 3-D nano-fabrication based on two-photon polymerizationNat Commun2019101217910.1038/s41467-019-10249-2

[126] Saha S K, Wang D E, Nguyen V H, et alScalable submicrometer additive manufacturingScience2019366646110510910.1126/science.aax8760

[127] Somers P, Liang Z H, Johnson J E, et alRapid, continuous projection multi-photon 3D printing enabled by spatiotemporal focusing of femtosecond pulsesLight Sci Appl202110119910.1038/s41377-021-00645-z

[128] Liu Y H, Zhao Y Y, Jin F, et alλ/12 super resolution achieved in maskless optical projection nanolithography for efficient cross-scale patterningNano Lett20212193915392110.1021/acs.nanolett.1c00559

[129] Duan X M, Sun H B, Kaneko K, et alTwo-photon polymerization of metal ions doped acrylate monomers and oligomers for three-dimensional structure fabricationThin Solid Films2004453-45451852110.1016/j.tsf.2003.11.126

[130] Wong S, Deubel M, Pérez-Willard F, et alDirect laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glassesAdv Mater200618326526910.1002/adma.200501973

[131] Ledermann A, Cademartiri L, Hermatschweiler M, et alThree-dimensional silicon inverse photonic quasicrystals for infrared wavelengthsNat Mater200651294294510.1038/nmat1786

[132] Ya Q, Chen W Q, Dong X Z, et alDual photonic band gap and reversible tuning of 3D photonic crystal fabricated by multiphoton polymerization with photoresponsive polymerAppl Phys A200893239339810.1007/s00339-008-4789-3

[133] Dong X Z, Ya Q, Sheng X Z, et alPhotonic bandgap of gradient quasidiamond lattice photonic crystalAppl Phys Lett2008922323110310.1063/1.2943278

[134] Liu Y J, Wang H, Ho J, et alStructural color three-dimensional printing by shrinking photonic crystalsNat Commun2019101434010.1038/s41467-019-12360-w

[135] Gansel J K, Thiel M, Rill M S, et alGold helix photonic metamaterial as broadband circular polarizerScience200932559471513151510.1126/science.1177031

[136] Ergin T, Stenger N, Brenner P, et alThree-dimensional invisibility cloak at optical wavelengthsScience2010328597633733910.1126/science.1186351

[137] Digaum J L, Pazos J J, Chiles J, et alTight control of light beams in photonic crystals with spatially-variant lattice orientationOpt Express20142221257882580410.1364/OE.22.025788

[138] Turner M D, Schröder-Turk G E, Gu MFabrication and characterization of three-dimensional biomimetic chiral compositesOpt Express20111910100011000810.1364/OE.19.010001

[139] Turner M D, Saba M, Zhang Q M, et alMiniature chiral beamsplitter based on gyroid photonic crystalsNat Photonics201371080180510.1038/nphoton.2013.233

[140] Li H L, Lee W B, Zhou C Y, et alFlat retroreflector based on a metasurface doublet enabling reliable and angle-tolerant free-space optical linkAdv Opt Mater2021921210079610.1002/adom.202100796

[141] Balli F, Sultan M, Lami S K, et alA hybrid achromatic metalensNat Commun2020111389210.1038/s41467-020-17646-y

[142] Balli F, Sultan M A, Ozdemir A, et alAn ultrabroadband 3D achromatic metalensNanophotonics20211041259126410.1515/nanoph-2020-0550

[143] McLamb M, Li Y Z, Stinson P, et alMetasurfaces for the infrared spectral range fabricated using two-photon polymerizationThin Solid Films202172113854810.1016/j.tsf.2021.138548

[144] Arbabi A, Arbabi E, Kamali S M, et alMiniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrationsNat Commun2016711368210.1038/ncomms13682

[145] Hu Z Y, Jiang T, Tian Z N, et alBroad-bandwidth micro-diffractive optical elementsLaser Photonics Rev2022163210053710.1002/lpor.202100537

[146] Balli F. Optical metasurfaces[D]. Lexington: University of Kentucky, 2021.

[147] Sultan M A, Balli F, Lau D L, et alHybrid metasurfaces for simultaneous focusing and filteringOpt Lett202146221421710.1364/OL.410080

[148] Safronov K R, Bessonov V O, Akhremenkov D V, et alMiniature otto prism coupler for integrated photonicsLaser Photonics Rev2022164210054210.1002/lpor.202100542

[149] Gehring H, Blaicher M, Hartmann W, et alLow-loss fiber-to-chip couplers with ultrawide optical bandwidthAPL Photonics20194101080110.1063/1.5064401

[150] Hou Z S, Xiong X, Cao J J, et alOn-chip polarization rotatorsAdv Opt Mater2019710190012910.1002/adom.201900129

[151] Blaicher M, Billah M R, Kemal J, et alHybrid multi-chip assembly of optical communication engines by in situ 3D nano-lithographyLight Sci Appl2020917110.1038/s41377-020-0272-5

[152] Schumann M, Bückmann T, Gruhler N, et alHybrid 2D–3D optical devices for integrated optics by direct laser writingLight Sci Appl201436e17510.1038/lsa.2014.56

[153] Lindenmann N, Balthasar G, Hillerkuss D, et alPhotonic wire bonding: a novel concept for chip-scale interconnectsOpt Express20122016176671767710.1364/OE.20.017667

[154] Nocentini S, Riboli F, Burresi M, et alThree-dimensional photonic circuits in rigid and soft polymers tunable by lightACS Photonics2018583222323010.1021/acsphotonics.8b00461

[155] Bekenstein R, Kabessa Y, Sharabi Y, et alControl of light by curved space in nanophotonic structuresNat Photonics2017111066467010.1038/s41566-017-0008-0

[156] Keum D, Jang K W, Jeon D S, et alXenos peckii vision inspires an ultrathin digital cameraLight Sci Appl2018718010.1038/s41377-018-0081-2

[157] Gissibl T, Thiele S, Herkommer A, et alTwo-photon direct laser writing of ultracompact multi-lens objectivesNat Photonics201610855456010.1038/nphoton.2016.121

[158] Bogucki A, Zinkiewicz Ł, Grzeszczyk M, et alUltra-long-working-distance spectroscopy of single nanostructures with aspherical solid immersion microlensesLight Sci Appl2020914810.1038/s41377-020-0284-1

[159] Thiele S, Arzenbacher K, Gissibl T, et al3D-printed eagle eye: compound microlens system for foveated imagingSci Adv201732e160265510.1126/sciadv.1602655

[160] Thiele S, Pruss C, Herkommer A M, et al3D printed stacked diffractive microlensesOpt Express20192724356213563010.1364/OE.27.035621

[161] Zhao Y Y, Zhang Y L, Zheng M L, et alThree-dimensional Luneburg lens at optical frequenciesLaser Photonics Rev201610466567210.1002/lpor.201600051

[162] Xia C, Gutierrez J J, Kuebler S M, et alCylindrical-lens-embedded photonic crystal based on self-collimationOpt Express20223069165918010.1364/OE.452467

[163] Wei H M, Callewaert F, Hadibrata W, et alTwo-photon direct laser writing of inverse-designed free-form near-infrared polarization beamsplitterAdv Opt Mater2019721190051310.1002/adom.201900513

[164] Camayd-Muñoz P, Faraon A. Scaling laws for inverse-designed metadevices[C]//CLEO: QELS_Fundamental Science 2018, 2018: FF3C. 7.

[165] Hadibrata W, Wei H M, Krishnaswamy S, et alInverse design and 3D printing of a metalens on an optical fiber tip for direct laser lithographyNano Lett20212162422242810.1021/acs.nanolett.0c04463

[166] Roques-Carmes C, Lin Z, Christiansen R E, et alToward 3D-printed inverse-designed metaopticsACS Photonics202291435110.1021/acsphotonics.1c01442

[167] Surjadi J U, Gao L B, Du H F, et alMechanical metamaterials and their engineering applicationsAdv Eng Mater2019213180086410.1002/adem.201800864

[168] Kadic M, Bückmann T, Stenger N, et alOn the practicability of pentamode mechanical metamaterialsAppl Phys Lett20121001919190110.1063/1.4709436

[169] Kadic M, Bückmann T, Schittny R, et alPentamode metamaterials with independently tailored bulk modulus and mass densityPhys Rev Appl20142505400710.1103/PhysRevApplied.2.054007

[170] Bückmann T, Thiel M, Kadic M, et alAn elasto-mechanical unfeelability cloak made of pentamode metamaterialsNat Commun201451413010.1038/ncomms5130

[171] Frenzel T, Kadic M, Wegener MThree-dimensional mechanical metamaterials with a twistScience201735863661072107410.1126/science.aao4640

[172] Williams G, Hunt M, Boehm B, et alTwo-photon lithography for 3D magnetic nanostructure fabricationNano Res201811284585410.1007/s12274-017-1694-0

[173] Lao Z X, Xia N, Wang S J, et alTethered and untethered 3D microactuators fabricated by two-photon polymerization: a reviewMicromachines202112446510.3390/mi12040465

[174] He Z Q, Tan G J, Chanda D, et alNovel liquid crystal photonic devices enabled by two-photon polymerization [Invited]Opt Express2019278114721149110.1364/OE.27.011472

[175] Zheng C L, Jin F, Zhao Y Y, et alLight-driven micron-scale 3D hydrogel actuator produced by two-photon polymerization microfabricationSensor Actuat B Chem202030412734510.1016/j.snb.2019.127345

[176] Xia H, Wang J, Tian Y, et alFerrofluids for fabrication of remotely controllable micro-nanomachines by two-photon polymerizationAdv Mater201022293204320710.1002/adma.201000542

[177] Wang W K, Sun Z B, Zheng M L, et alMagnetic nickel–phosphorus/polymer composite and remotely driven three-dimensional micromachine fabricated by nanoplating and two-photon polymerizationJ Phys Chem C201111522112751128110.1021/jp202644d

[178] Tottori S, Zhang L, Qiu F M, et alMagnetic helical micromachines: fabrication, controlled swimming, and cargo transportAdv Mater201224681181610.1002/adma.201103818

[179] Ma Z C, Zhang Y L, Han B, et alFemtosecond laser programmed artificial musculoskeletal systemsNat Commun2020111453610.1038/s41467-020-18117-0

[180] Zeng H, Wasylczyk P, Parmeggiani C, et alLight-fueled microscopic walkersAdv Mater201527263883388710.1002/adma.201501446

[181] Lin X F, Hu G Q, Chen Q D, et alA light-driven turbine-like micro-rotor and study on its light-to-mechanical power conversion efficiencyAppl Phys Lett20121011111390110.1063/1.4751464

[182] Ikegami T, Ozawa R, Stocker M P, et alDevelopment of optically-driven metallic microrotors using two-photon microfabricationJ Laser Micro Nanoen20138161010.2961/jlmn.2013.01.0002

[183] Zhou W H, Kuebler S M, Braun K L, et alAn efficient two-photon-generated photoacid applied to positive-tone 3D microfabricationScience200229655701106110910.1126/science.296.5570.1106

[184] Baldacchini T. Three-Dimensional Microfabrication Using Two-Photon Polymerization[M]. 2nd ed. Oxford: William Andrew, 2019.

[185] Maruo S, Inoue HOptically driven micropump produced by three-dimensional two-photon microfabricationAppl Phys Lett2006891414410110.1063/1.2358820

[186] Maruo S, Takaura A, Saito YOptically driven micropump with a twin spiral microrotorOpt Express20091721185251853210.1364/OE.17.018525

[187] Wang J, He Y, Xia H, et alEmbellishment of microfluidic devices via femtosecond laser micronanofabrication for chip functionalizationLab Chip201010151993199610.1039/c003264f

[188] Amato L, Gu Y, Bellini N, et alIntegrated three-dimensional filter separates nanoscale from microscale elements in a microfluidic chipLab Chip20121261135114210.1039/c2lc21116e

[189] Wu D, Chen Q D, Niu L G, et alFemtosecond laser rapid prototyping of nanoshells and suspending components towards microfluidic devicesLab Chip20099162391239410.1039/b902159k

[190] Lim T W, Son Y, Jeong Y J, et alThree-dimensionally crossing manifold micro-mixer for fast mixing in a short channel lengthLab Chip201111110010310.1039/C005325M

[191] Wu D, Wu S Z, Xu J, et alHybrid femtosecond laser microfabrication to achieve true 3D glass/polymer composite biochips with multiscale features and high performance: the concept of ship-in-a-bottle biochipLaser Photonics Rev20148345846710.1002/lpor.201400005

[192] He Y, Huang B L, Lu D X, et al“Overpass” at the junction of a crossed microchannel: An enabler for 3D microfluidic chipsLab Chip201212203866386910.1039/c2lc40401j

[193] Hahn V, Messer T, Bojanowski N M, et alTwo-step absorption instead of two-photon absorption in 3D nanoprintingNat Photonics2021151293293810.1038/s41566-021-00906-8

[194] Ueno K, Juodkazis S, Shibuya T, et alNanoparticle plasmon-assisted two-photon polymerization induced by incoherent excitation sourceJ Am Chem Soc2008130226928692910.1021/ja801262r

[195] Thiel M, Fischer J, Von Freymann G, et alDirect laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nmAppl Phys Lett2010972222110210.1063/1.3521464

[196] Mueller P, Thiel M, Wegener M3D direct laser writing using a 405 nm diode laserOpt Lett201439246847685010.1364/OL.39.006847

[197] Yu H Y, Ding H B, Zhang Q M, et alThree-dimensional direct laser writing of PEGda hydrogel microstructures with low threshold power using a green laser beamLight Adv Manuf202121313810.37188/lam.2021.003

[198] Gräfe D, Wickberg A, Zieger M M, et alAdding chemically selective subtraction to multi-material 3D additive manufacturingNat Commun201891278810.1038/s41467-018-05234-0

[199] Fang G, Cao H Z, Cao L C, et alFemtosecond laser direct writing of 3D silica-like microstructure from hybrid epoxy cyclohexyl POSSAdv Mater Technol201833170027110.1002/admt.201700271

[200] Hirt L, Reiser A, Spolenak R, et alAdditive manufacturing of metal structures at the micrometer scaleAdv Mater20172917160421110.1002/adma.201604211

[201] Ma Z C, Zhang Y L, Han B, et alFemtosecond-laser direct writing of metallic micro/nanostructures: from fabrication strategies to future applicationsSmall Methods201827170041310.1002/smtd.201700413

[202] Cao Y Y, Takeyasu N, Tanaka T, et al3D metallic nanostructure fabrication by surfactant-assisted multiphoton-induced reductionSmall20095101144114810.1002/smll.200801179

[203] Zhao Y Y, Ren X L, Zheng M L, et alPlasmon-enhanced nanosoldering of silver nanoparticles for high-conductive nanowires electrodesOpto-Electron Adv202141220010110.29026/oea.2021.200101

[204] 周伟平, 白石, 谢祖武, 等激光直写制备金属与碳材料微纳结构与器件研究进展光电工程202249121033010.12086/oee.2022.210330

    Zhou W P, Bai S, Xie Z W, et alResearch progress of laser direct writing fabrication of metal and carbon micro/nano structures and devicesOpto-Electron Eng202249121033010.12086/oee.2022.210330

[205] Merkininkaitė G, Aleksandravičius E, Malinauskas M, et alLaser additive manufacturing of Si/ZrO2 tunable crystalline phase 3D nanostructuresOpto-Electron Adv20225521007710.29026/oea.2022.210077

[206] Li Y, Chen L W, Kong F, et alFunctional micro-concrete 3D hybrid structures fabricated by two-photon polymerizationOpto-Electron Eng2017444393399

[207] Kotz F, Quick A S, Risch P, et alTwo-photon polymerization of nanocomposites for the fabrication of transparent fused silica glass microstructuresAdv Mater2021339200634110.1002/adma.202006341

[208] Doualle T, André J C, Gallais L3D printing of silica glass through a multiphoton polymerization processOpt Lett202146236436710.1364/OL.414848

[209] Wen X W, Zhang B Y, Wang W P, et al3D-printed silica with nanoscale resolutionNat Mater202120111506151110.1038/s41563-021-01111-2

[210] Ocier C R, Richards C A, Bacon-Brown D A, et alDirect laser writing of volumetric gradient index lenses and waveguidesLight Sci Appl20209119610.1038/s41377-020-00431-3

[211] Dottermusch S, Busko D, Langenhorst M, et alExposure-dependent refractive index of Nanoscribe IP-Dip photoresist layersOpt Lett2019441293210.1364/OL.44.000029

赵圆圆, 金峰, 董贤子, 郑美玲, 段宣明. 飞秒激光双光子聚合三维微纳结构加工技术[J]. 光电工程, 2023, 50(3): 220048. Yuanyuan Zhao, Feng Jin, Xianzi Dong, Meiling Zheng, Xuanming Duan. Femtosecond laser two-photon polymerization three-dimensional micro-nanofabrication technology[J]. Opto-Electronic Engineering, 2023, 50(3): 220048.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!