乔鹏飞 1,*刘康 1代兵 1刘本建 1[ ... ]朱嘉琦 1,2
作者单位
摘要
1 特种环境复合材料技术国家级重点实验室(哈尔滨工业大学), 哈尔滨 150001
2 微系统与微结构制造教育部重点实验室(哈尔滨工业大学), 哈尔滨 150001
5G 通信、能源互联网、新能源汽车、量子技术等高精尖领域对半导体的性能提出了新的更高的要求。第四代半导体金刚石因具有优异的物理化学性能被誉为“终极半导体”, 被认为是制备下一代高功率、高频、高温及低功率损耗电子器件最理想的材料。而浅n型掺杂的技术瓶颈一定程度阻碍了金刚石半导体应用的发展。表面终端研究为金刚石功能化的发展提供了新的策略, 金刚石通过表面终端实现了场效应晶体管、肖特基二极管、日盲紫外探测器、电子发射器件和近表面色心调控等重要应用, 而表面终端发挥作用的机理与其能带结构特点密不可分。本文综述了几种常见终端的能带研究方法, 分析其能带的结构特点, 结合特点介绍其发挥作用的机理, 并进行了总结和展望。
金刚石 表面终端 能带结构 二维空穴气 肖特基结 紫外探测 diamond surface terminal energy band structure two-dimensional hole gas Schottky junction ultraviolet detection 
人工晶体学报
2023, 52(6): 945
陈根强 1,2,*赵浠翔 1,2于众成 1,2李政 1,2[ ... ]王宏兴 1,2
作者单位
摘要
1 西安交通大学, 电子物理于器件教育部重点实验室, 西安 710049
2 西安交通大学电子与信息学部, 宽禁带半导体与量子器件研究所, 西安 710049
相较于传统的硅材料, 宽禁带半导体材料更适合制作高压、高频、高功率的半导体器件, 被认为是后摩尔时代材料创新的关键角色。单晶金刚石拥有大禁带宽度、高热导率、高迁移率等优异特性, 更是下一代大功率、高频电子器件的理想半导体材料。然而由于可获得单晶金刚石的尺寸较小, 且价格昂贵, 极大地阻碍了金刚石的发展。历经长时间的探索, 异质外延生长技术成为了获得高质量、大面积单晶金刚石的有效手段。本综述从金刚石异质外延的衬底选择、生长机理以及质量改善等方面对近些年来异质外延单晶金刚石的发展进行详细介绍。进一步地, 对基于异质外延单晶金刚石的场效应晶体管和二极管的研究进行了总结, 说明了异质外延单晶金刚石在电子器件领域的巨大潜力。最后总结了异质外延单晶金刚石仍需面对的挑战, 展望了其在未来的应用与发展前景。
单晶金刚石 异质外延生长 宽禁带半导体 半导体器件 场效应晶体管 二极管 single-crystal diamond heteroepitaxial growth wide-band gap semiconductor semiconductor device field-effect transistor diode 
人工晶体学报
2023, 52(6): 931
作者单位
摘要
1 广东工业大学物理与光电工程学院, 广州 510006
2 松山湖材料实验室, 东莞 523808
4H-SiC单晶是典型的难加工材料, 研磨加工后表面损伤的密度和深度直接影响后续抛光工序的质量和效率。采用普通铸铁盘研磨工艺会导致晶圆表面划痕多、边缘破片以及去除率不稳定等问题。本实验采用聚氨酯垫研磨工艺, 减少研磨划痕, 提高了研磨后的表面质量, 实现了SiC衬底的精准研磨。通过改变金刚石磨料粒度、磨抛盘转速、研磨压强进行SiC衬底的研磨实验, 探究最优工艺参数及各条件对研磨效果的影响规律。实验结果表明: 随着研磨盘速度增大, 研磨的去除率增大, 其对应的粗糙度先降低后升高; 增大金刚石磨料的粒径会增大研磨的去除率, 但研磨后表面粗糙度也会持续增大; 通过增加研磨压强, 材料的去除率和表面粗糙度都将增加, 但去除率增加的速率由快变慢, 而粗糙度增加的速率逐渐加快。综合考虑, 采用聚氨酯垫研磨时, 较优研磨工艺参数为: 金刚石研磨液浓度为3%, 金刚石粒径为1 μm, 研磨液供给速度为5 mL/min, 研磨压强为47 kPa, 研磨转速35 r/min。该工艺下SiC材料的去除率为0.7 μm/h, 研磨后SiC衬底的表面粗糙度为24 nm。
研磨 聚氨酯垫 表面粗糙度 去除率 金刚石磨料 4H-SiC 4H-SiC grinding polyurethane pad surface roughness removal rate diamond abrasive 
人工晶体学报
2023, 52(5): 759
作者单位
摘要
1 广东工业大学物理与光电工程学院, 广州 510006
2 松山湖材料实验室, 东莞 523808
3 中国科学院物理研究所功能晶体研究与应用中心, 北京 100190
本文提出了一种改进的氢氧化钾(KOH)腐蚀方法, 该方法利用鼓泡器将干燥空气直接通入熔融KOH中, 以达到快速排出熔融KOH中水分和增强溶解氧的目的。本研究通过提升部分潮解的KOH对低掺杂n型外延片的腐蚀效果和纯KOH对高掺杂n型衬底的腐蚀效果, 验证了该方法的有效性。实验结果表明: 在腐蚀前的恒温时间段内, 向腐蚀剂通入干燥空气, 可加快腐蚀剂中水分的蒸发速度, 减轻水分对腐蚀反应的抑制作用, 使得部分潮解的KOH用于腐蚀外延片的效果优于未潮解的新鲜KOH; 在腐蚀时向腐蚀剂通入干燥空气, 可增加腐蚀剂中的溶解氧, 促进腐蚀时发生的氧化还原反应, 使得KOH腐蚀SiC衬底的效果近似于用KOH+Na2O2共熔体腐蚀得到的效果。本研究有效改良了传统KOH腐蚀方法, 对于稳定KOH腐蚀条件, 提高SiC位错腐蚀效果具有很好的实际应用价值。
碳化硅 腐蚀 位错 缺陷表征 鼓泡器 腐蚀速率 SiC etching dislocation defect characterization bubbler etching rate 
人工晶体学报
2023, 52(5): 753
彭大青 1,2,3,*李忠辉 1,2,3蔡利康 1李传皓 1,2,3[ ... ]罗伟科 1,2,3
作者单位
摘要
1 南京电子器件研究所, 南京 210016
2 微波毫米波单片集成和模块电路重点实验室, 南京 210016
3 中国电子科技集团有限公司碳基电子重点实验室, 南京 210016
针对高线性氮化镓微波功率器件研制需求, 设计并外延生长了复合势垒的Al0.26Ga0.74N/GaN/Al0.20Ga0.80N/GaN异质结构材料, 通过理论计算和电容-电压(C-V)测试表明复合势垒材料存在两层二维电子气沟道。生长的复合势垒材料二维电子气迁移率达到1 510 cm2·V-1·s-1, 面密度达到9.7×1012 cm-2。得益于双沟道效应, 基于复合势垒材料研制的器件跨导存在两个峰, 使得跨导明显展宽, 达到3.0 V, 是常规材料的1.5倍。复合势垒结构器件的跨导一阶导数与二阶导数具有更加优异的特性, 表明其具有更高的谐波抑制能力, 显示复合势垒AlGaN/GaN异质结构在高线性应用上的优势。
AlGaN/GaN异质结 复合势垒 金属有机物气相沉积 高线性 跨导 二维电子气 AlGaN/GaN heterojunction coupled barrier metal-organic chemical vapor deposition high linearity transconductance two-dimensional electron gas 
人工晶体学报
2023, 52(5): 746
彭博 1,2李奇 1,2张舒淼 1,2樊叔维 1,2[ ... ]王宏兴 1,2
作者单位
摘要
1 西安交通大学, 电子物理与器件教育部重点实验室, 西安 710049
2 西安交通大学电子与信息学部, 宽禁带半导体与量子器件研究所, 西安 710049
金刚石具有宽带隙(5.47 eV)、高载流子迁移率(空穴3 800 cm2/(V·s)、电子4 500 cm2/(V·s))、高热导率(22 W·cm-1·K-1)、高临界击穿场强(>10 MV/cm), 以及最优的Baliga器件品质因子, 使得金刚石半导体器件在高温、高频、高功率, 以及抗辐照等极端条件下有良好的应用前景。随着单晶金刚石CVD生长技术和p型掺杂的突破, 以硼掺杂金刚石为主的肖特基二极管(SBD)的研究广泛展开。本文详细介绍了金刚石SBD的工作原理, 探讨了高掺杂p型厚膜、低掺杂漂移区p型薄膜的生长工艺, 研究了不同金属与金刚石形成欧姆接触、肖特基接触的条件, 分析了横向、垂直、准垂直器件结构的制备工艺, 以及不同结构对SBD正向、反向、击穿特性的影响, 阐述了场板、钝化层、边缘终端等器件结构对SBD内部电场的调制作用, 进而提升器件反向击穿电压, 最后总结了金刚石SBD的应用前景及面临的挑战。
金刚石 肖特基二极管 金属-半导体接触 场板 钝化层 边缘终端 diamond Schottky barrier diode metal-semiconductor contact field plate passivation layer edge terminal 
人工晶体学报
2023, 52(5): 732
杨学林 1,2,3,*沈波 1,2,3,4
作者单位
摘要
1 北京大学宽禁带半导体研究中心, 北京 100871
2 北京大学人工微结构和介观物理国家重点实验室, 北京 100871
3 教育部纳光电子前沿科学中心, 北京 100871
4 量子物质科学协同创新中心, 北京 100871
Si衬底因兼具大尺寸、低成本以及与现有CMOS工艺兼容等优势, 使Si衬底上GaN基射频(RF)电子材料和器件成为继功率电子器件之后下一个该领域关注的焦点。由于力学性质与低阻Si衬底不同, 高阻Si衬底上GaN基外延材料生长的应力控制和位错抑制问题仍然困难, 且严重的射频损耗问题限制着其在射频电子领域的应用。本文简要介绍了Si衬底上GaN基射频电子材料的研究现状和面临的挑战, 重点介绍了北京大学研究团队在高阻Si衬底上GaN基材料射频损耗的产生机理, 以及低位错密度、低射频损耗GaN的外延生长等方面的主要研究进展。最后对Si衬底上GaN基射频电子材料和器件的未来发展作了展望。
Si衬底上GaN 金属有机化合物化学气相沉积 应力 位错 射频损耗 GaN-on-Si MOCVD stress dislocation RF loss 
人工晶体学报
2023, 52(5): 723

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!