作者单位
摘要
1 南昌大学食品科学与技术国家重点实验室, 江西 南昌 330047
2 江西省农业科学院农产品加工研究所, 江西 南昌 330200
糖基化反应能诱导食品中蛋白质的结构发生改变; Ara h2是花生中的主要蛋白组分之一, 可以作为一种模式蛋白研究花生蛋白糖基化产物的结构变化。 不同还原糖对Ara h2糖基化反应的影响目前未见相关报道。 以花生蛋白Ara h2为研究对象, 通过SDS-PAGE、 内源荧光、 同步荧光、 紫外、 圆二色谱、 红外等光谱技术研究Ara h2糖基化前后分子量、 二级、 三级结构以及官能团的变化, 分析六种还原糖(核糖、 木糖、 半乳糖、 葡萄糖、 果糖、 乳糖)对花生蛋白Ara h2糖基化产物结构的影响, 阐明经不同还原糖修饰后花生蛋白Ara h2的结构变化。 SDS-PAGE电泳表明木糖和核糖修饰的花生蛋白Ara h2电泳条带明显上移, 糖基化程度最大; 紫外光谱分析表明糖基化反应会改变花生蛋白Ara h2的吸收峰强度。 五碳糖修饰的花生蛋白Ara h2具有最强的吸收强度, 其中五碳糖中木糖的吸收峰强度最大; 内源荧光、 同步荧光和三维光谱实验结果表明, 糖基化修饰会使花生蛋白Ara h2的荧光强度降低, 且五碳糖修饰的Ara h2荧光强度最低。 分析认为由于糖基化修饰使花生蛋白Ara h2的结构展开, 导致芳香族氨基酸暴露在水环境中, 从而引起荧光猝灭; 圆二色谱分析表明不同还原糖修饰的Ara h2糖基化产物α-螺旋含量都增加, 其中木糖修饰的α-螺旋含量最大(15.6%); 红外光谱分析表明木糖和核糖修饰的花生蛋白Ara h2的吸收峰分别从3 327.41 cm-1红移至3 318.43和3 321.09 cm-1, 1 700~1 600 cm-1处木糖和核糖修饰的花生蛋白Ara h2吸收峰强度略高于其他还原糖修饰的该蛋白。 不同还原糖对Ara h2糖基化反应后的糖基化产物结构的影响不同, 还原糖的碳链越短、 空间位阻越小, 糖基化反应程度越高, 对Ara h2的结构影响越大。
糖基化 光谱技术 还原糖 Glycation Ara h2 Ara h2 Spectroscopic techniques Reducing sugar 
光谱学与光谱分析
2023, 43(4): 1291
作者单位
摘要
江西省农业科学院农产品加工研究所, 江西 南昌 330200
以牛血清白蛋白(BSA)和葡萄糖为原料, 采用光谱技术从分子水平上研究不同浓度尿素(0~7 mol·L-1)对BSA糖基化反应的影响。 结果表明: BSA经过尿素处理后, 其糖基化产物的自由氨基含量和内源荧光强度均显著下降; 同步荧光光谱表明BSA与尿素的结合点更接近于色氨酸(Trp)残基; 紫外光谱分析表明经尿素处理后BSA的糖基化产物的紫外吸收值均有不同程度的增加; 三维荧光光谱表明随着尿素浓度的增加, BSA的最大发射波长产生先红移再蓝移的变化趋势, 说明其结构展开, 促进了BSA的糖基化反应。 结果表明, 尿素处理会使BSA的空间结构发生不同程度的伸展, 且当尿素浓度为3 mol·L-1时BSA的糖基化反应程度最大。
尿素 牛血清白蛋白 糖基化 光谱分析 Urea Bovine serum albumin Glycation Spectral analysis 
光谱学与光谱分析
2021, 41(2): 478
作者单位
摘要
南昌大学食品科学与技术国家重点实验室, 江西 南昌 330047
采用圆二色谱(CD)、 X射线衍射(XRD)、 ANS荧光探针和紫外(UV)光谱研究了动态超高压微射流对卵清蛋白微观结构的影响。 结果表明: 卵清蛋白的微观结构的变化与处理压力有关, CD显示不同压力处理的卵清蛋白二级结构中的α-螺旋, β-折叠, β-转角和无规卷曲之间发生相互转化, 二级结构的有序性提高; X射线衍射图谱直观显示不同压力处理的卵清蛋白晶体结构增加, 160 MPa处理下结晶区最大, 说明蛋白结构的有序性提高, 与CD分析结果相似; ANS荧光探针光谱显示卵清蛋白的表面疏水性随着处理压力的增大而提高, 120 MPa处理下达到最大; 紫外光谱显示随着处理压力的增大, 卵清蛋白最大紫外吸光值下降, 卵清蛋白分子表面的具有紫外吸收的芳香氨基酸残基被包埋于分子内部, 卵清蛋白的三维结构发生改变。
动态超高压微射流 卵清蛋白 圆二色谱 X射线衍射 ANS荧光探针 紫外光谱 Dynamic high pressure microfluidization Ovalbumin Circular dichroism XRD spectra ANS fluorescence probe Ultraviolet spectra 
光谱学与光谱分析
2010, 30(2): 495

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!