江毅 1,2,*张雨彤 1,2,3邓辉 1,2
作者单位
摘要
1 北京理工大学光电学院,北京 100081
2 信息光子技术工业和信息化部重点实验室,北京 100081
3 包头师范学院物理科学与技术学院,内蒙古 包头 014030
提出了一种高温大量程的蓝宝石法布里-珀罗(F-P)干涉仪压力传感器。传感器由三层蓝宝石晶片直接键合而成,包括蓝宝石衬底、带通孔的蓝宝石晶片和感压蓝宝石晶片。飞秒激光用于在蓝宝石晶片的中心刻蚀通孔,并粗糙化感压蓝宝石晶片的外表面。利用蓝宝石晶片抛光面作为F-P腔的反射面,有助于降低解调出的光学腔长波动,提高压力分辨率。提出的传感器在室温、0~30 MPa的高压力范围内光学腔长随压力线性变化,压力灵敏度为0.1253 μm/MPa,相对分辨率达到0.04% FS(full scale,全量程),且能在700 ℃下稳定工作。
光纤光学 光纤压力传感器 非本征法布里-珀罗干涉仪 蓝宝石晶片 飞秒激光微加工 大压力量程 
光学学报
2023, 43(15): 1506001
作者单位
摘要
1 厦门大学机电工程系,福建 厦门 361005
2 流体动力与机电系统国家重点实验室,浙江 杭州 310027
Overview: Microstructure sensor is a kind of sensor with a 2D or 3D micron-scale structure prepared by advanced manufacturing technology. It is used as a sensitive part to enhance the transmission characteristics of physical, chemical, and biological signals to the environment, and convert the external signals into electrical signals. The microstructure is generally a regular or disordered structure, usually in the shape of microspheres, microcolumns, microcones, microgrooves and micropores. The microstructures with different shapes can realize the functions of puncture, pressure transmission, vibration transmission, drug transmission, bioelectric transmission, heat transmission, sound transmission, gas adsorption, and so on. In recent years, researchers from all over the world have gradually attached great importance to the research on the manufacturing technology of microstructure sensors. At present, researchers have proposed the MEMS manufacturing processes, such as reactive ion etching and chemical vapor deposition, to achieve mass manufacturing of high-precision microstructures on flexible polymer materials and rigid materials. In addition, some researchers have also proposed the manufacturing processes such as template method, self-assembly, nanoimprinting, and soft lithography to realize microstructure manufacturing. However, the above-mentioned manufacturing processes usually cannot prepare microstructure in one step, which has the problems of complex process, high production cost, limited processing materials, and unable to control the microstructure morphology. In contrast, laser manufacturing technology has the advantages of non-contact processing, no mask, customizable manufacturing, etc. By optimizing the parameters of laser process (such as laser power, scanning speed, filling mode and scanning path), it can achieve efficient and low-cost manufacturing of microstructures with different sizes and shapes. Therefore, using laser manufacturing technology to realize microstructure manufacturing and applying it to bioelectricity, temperature, and pressure sensors has become a research hotspot in microstructure sensor manufacturing technology. Laser manufacturing technology mainly includes laser ablation, laser direct writing, laser induction, laser-template processing, etc. Laser ablation is an auxiliary heating process based on the thermochemical and thermophysical effects of a laser beam, which melts the materials to be processed to realize structural forming. Laser direct writing is a manufacturing process that focuses high-energy photon beams on the materials to be processed to produce a photochemical process, and manufacturing the structures through material removal. Laser-induced modification is a manufacturing process to change the physical and chemical properties of the materials to be processed. Laser-template processing is a manufacturing process that uses a laser to produce microstructure molds on silicon, glass, polymer, and other substrates, and then uses soft lithography technology to reverse die the structures on the molds. Based on the interaction between the laser and materials, the induction, removal, and migration of materials to be processed can be realized. By adjusting the laser processing mode and processing parameters, the controlled manufacturing of the 2D or 3D microstructures or the controlled preparation of functional materials for the sensitive units can be realized, breaking through the limitations of efficiency and cost of traditional manufacturing methods for microstructures. In this paper, the types, functions, and manufacturing technologies of microstructures are summarized and classified. The preparation processes of laser manufacturing technology and other advanced manufacturing technologies of microstructures are summarized. The applications of microstructure sensors prepared by laser ablation, laser direct writing, laser induction, and laser-template processing technology in bioelectric sensing, temperature sensing, and pressure sensing are described in detail. Finally, the development trend of the laser manufacturing technology for microstructure sensors is summarized and prospected.
激光制造 微结构 生物电传感器 温度传感器 压力传感器 laser manufacturing microstructure bioelectric sensors temperature sensors pressure sensors 
光电工程
2023, 50(3): 220041
作者单位
摘要
南京理工大学材料科学与工程学院, 南京 210094
压电材料由于其独特的机电耦合特性而被广泛应用到传感器和制动器等设备中。柔性电子技术是未来智能技术的重要支撑, 然而, 压电材料难以同时兼具柔性和高压电性能, 这限制了压电材料在柔性电子领域的应用。总结了目前可用的柔性压电材料及其设计和制备方法, 随后系统的总结了柔性压电材料在压力传感、能量收集和生物医学等方面的应用, 最后评述了柔性压电材料发展的挑战和前景展望。
压电材料 柔性电子技术 压力传感器 能量收集 piezoelectric materials flexible electronic technology pressure sensors energy harvesting 
硅酸盐学报
2022, 50(3): 625
作者单位
摘要
重庆大学 新型微纳器件与系统技术国防重点学科实验室, 重庆 400044
声表面波压力传感器因具有无源无线、高精度可编码、易于多参数传感集成等优点, 被广泛应用于各种极端环境下的压力测量。该文首先介绍了声表面波压力传感器的工作原理及其技术优势, 然后分别介绍了声表面波压力传感器在高温和高压环境下的发展现状, 并讨论了该类器件的设计难点及未来发展趋势。
高温 高压 声表面波 压力传感器 high temperature high pressure surface acoustic wave pressure sensors 
压电与声光
2021, 43(3): 306
作者单位
摘要
昆明理工大学 机电工程学院, 昆明 650504
以石墨烯作为压力传感器敏感材料, Si为基底材料, 氮化硼(PN)为石墨烯保护材料, 惠斯通测量电桥作为力电变换测量电路, 构建了硅基石墨烯压力传感器。通过鼓泡实验法建立传感器的理论模型, 分析了传感器的压力与中心形变位移之间的关系, 并结合ANSYS软件静力学非线性分析单元, 针对所述石墨烯薄膜的挠度形变特性进行了数值解析与有限元仿真。结果表明, 石墨烯薄膜压力与挠度形变的理论分析与仿真结果相吻合, 这为石墨烯压力传感器提供了结构设计与理论模型基础。
石墨烯 压力传感器 最大应力 中心形变位移 压敏电阻 graphene pressure sensors maximum stress central deformation shift pressure-sensitive resistors 
半导体光电
2020, 41(5): 676
作者单位
摘要
南京邮电大学 电子科学与工程学院, 南京 210046
提出了一种考虑温度影响的基于光子晶体的微压力传感器, 传感器由微压力传感和温度传感两部分构成, 其中微压力传感部分测量的是所处温度环境下的压力值。两部分传感器均利用波导和腔的耦合实现带阻滤波功能, 根据带阻滤波器的模式在所处温度下线性红移, 分别计算相应的温度值和该温度下的压力值, 并通过热光效应和热膨胀效应计算出温度对器件材料折射率的影响, 从而得到真实的微压力。文中对结构参数进行了优化设计, 实现了1.33 nm/μN的微压力灵敏度。
光子晶体 压力传感器 温度 悬臂 photonic crystals pressure sensors temperature cantilver 
半导体光电
2017, 38(6): 806
作者单位
摘要
华南农业大学 电子工程学院,广州 510000
基于马赫曾德干涉原理,设计搭建了可调制与放大干涉条纹的光压测量装置.由频率和功率可调制脉冲激光产生光压,使真空中两面高反镀铝薄膜产生微小形变(位移),从而使由氦氖激光器发射、经半反半透镜分束的参考光和信号光的光程差改变,即干涉条纹发生改变.用CCD记录干涉条纹位移量,数据处理获得干涉条纹位移量和薄膜形变量的关系,计算出脉冲激光在薄膜处的光压.分别讨论了脉冲激光入射角度、频率等参量对检测结果的影响,并通过双角度入射方法消除了热辐射效应的影响.该检测装置可测得最小光功率为15.0mW所产生的光压大小为13.42 μPa,线性工作范围为15.0 mW(13.42 μPa)至200 mW(1179 μPa),且工作稳定、灵敏度高,测量结果准确.
应用光学 光学技术与仪器 马赫曾德干涉仪 光压测量 压力传感器 激光干涉测量 薄膜 脉冲调制 Applied optics Optical technique and instrument Mach-Zehnder interferometers Light pressure detection Pressure sensors Laser interferometry Thin films Pulse modulation 
光子学报
2016, 45(6): 0612002
作者单位
摘要
泉州师范学院物理与信息工程学院, 福建 泉州 362000
研制了一种光纤微弯气压传感器,提出了一种利用梯形弹簧的压力非线性特性补偿光纤微弯传感器非线性的方法,并提出了利用差动检测克服光路损耗不稳定的方法。介绍了梯形弹簧光纤微弯传感器工作原理,对梯形弹簧变形量压力响应曲线进行非线性拟合,得到二次拟合曲线。实验测试了0~0.1 MPa 范围的气压传感特性。结果表明,光纤气压传感器的输出电压信号与气压值具有良好的线性关系,得到气压测量灵敏度系数约为2000 mV/MPa,能够满足气象及飞行器高度监测中对气压测量的要求。
光纤光学 气压传感器 光纤微弯传感器 非线性弹簧 
激光与光电子学进展
2015, 52(5): 050601
Author Affiliations
Abstract
1 Key Laboratory of Instrumentation Science & Dynamic Measurement (North University of China), Ministry of Education, Taiyuan, 030051, China
2 Ministry of Education and Science Technology on Electronic Test & Measurement Laboratory, Department of Electronic Science and technology, North University of China, Taiyuan, 030051, China
This paper presents a novel readout system for wireless passive pressure sensors based on the inductively coupled inductor and cavity (LC) resonant circuits. The proposed system consists of a reader antenna inductively coupled to the sensor circuit, a readout circuit, and a personal computer (PC) post processing unit. The readout circuit generates a voltage signal representing the sensor’s capacitance. The frequency of the reader antenna driving signal is a constant, which is equal to the sensor’s resonant frequency at zero pressure. Based on mechanical and electrical modeling, the pressure sensor design based on the high temperature co-fired ceramic (HTCC) technology is conducted and discussed. The functionality and accuracy of the readout system are tested with a voltage-capacitance measurement system and demonstrated in a realistic pressure measurement environment, so that the overall performance and the feasibility of the readout system are proved.
Wireless passive pressure sensors LC resonant circuits HTCC inductive coupling 
Photonic Sensors
2014, 4(1): 70
作者单位
摘要
上海精密科学仪器有限公司,上海200233
为了提高气相色谱仪气路控制自动化水平,研制了电子流量/压力控制模块。该模块在基于闭环控制的方式上,通过小流量比例电磁阀、小流量和压力传感器、微型可调限流装置、颗粒过滤网、集成流路块体的优化设计,以放大基准电路、A/D转换、单片机控制系统PID、D/A转换、功率驱动电路来达到控制气体流量/压力的目的。再以单气路控制为最小单位,组合成在气相色谱中所使用的多气路为一体的控制模块组件。最后以毛细柱进样口和氢火焰离子检测器作为实例,证实了EPC电子流量/压力控制在气相色谱中应用的成功。
电子流量/压力控制(EPC) 比例电磁阀 流量/压力传感器 electronic flow/pressure control(EPC) proportional solenoid valve flow and pressure sensors 
光学仪器
2011, 33(4): 23

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!