作者单位
摘要
电子科技大学 电子科学与工程学院, 成都 610054
提出了一种可校正的12位C2C电容阵列混合结构逐次逼近型模数转换器(SAR ADC), 其数模转换器(DAC)由低6位分裂式C2C DAC阵列与高6位二进制DAC阵列构成。提出的混合结构DAC既解决了中高精度二进制SAR ADC中总电容过大的问题, 又避免了分段式二进制DAC分数值桥接电容无法与单位电容形成匹配的问题。该结构能显著降低整个ADC的动态功耗。此外, 将高位终端电容和低2~6位量化电容拆分成相等的两个电容, 引入冗余量, 使得该ADC的电容权重可以被校准, 降低了电容失配以及寄生电容的影响。最后, 为了避免电容上极板复位信号因电容阵列容值大而导致的延时偏大问题, 采用高6位DAC采样的方式, 并在高6位DAC中引入单位电容大小的终端电容, 弥补了参考电压区间不完整的缺陷。仿真结果显示, 在15 V电压下, 该ADC总体功耗仅为11184 μW, ENOB为1249位, SFDR为9146 dB, SNDR为7697 dB。
模数转换器 数模转换器 C2C电容阵列 混合结构SAR模数转换器 LMS校正算法 ADC DAC C2C capacitor array hybrid SAR ADC LMS correction algorithm 
微电子学
2023, 53(3): 359
作者单位
摘要
1 北京无线电测量研究所, 北京100854
2 北京航天微电科技有限公司, 北京 100854
为了提高矩形系数, 该文针对混合结构的声表面波滤波器的设计展开研究。建立仿真模型, 采用纵向耦合结构级联单个谐振器或多个谐振器, 并在36°Y-X LiTaO3和41°Y-X LiNbO3压电材料上研制出两种声表面波滤波器。测试结果表明, 滤波器的矩形系数分别为1.7和2, 测试与仿真结果基本吻合。
矩形系数 混合结构 声表面波 纵向耦合 谐振器 rectangle factor hybrid structure SAW longitudinally coupled resonator 
压电与声光
2023, 45(3): 331
作者单位
摘要
1 中国计量大学机电工程学院,浙江 杭州 310018
2 浙江大学地球科学学院,浙江 杭州 310027
大气黑碳气溶胶具有强吸光能力,由于形状和混合结构十分复杂,其光学特性具有较大不确定性。使用三维仿真建模工具EMBS建立不同分形维数(Df为1.8和2.6)和混合结构的黑碳单颗粒模型,采用耦合离散偶极近似(DDA)方法计算光吸收强度(Eabs)、单次散射反照率(SSA)和光吸收截面(Cabs),并与多球T矩阵(MSTM)和Mie散射方法的计算结果进行对比。研究发现MSTM模型的Eabs结果对包裹程度F比较敏感,而DDA模型的Eabs结果对黑碳包裹层厚度的敏感性更高。DDA和MSTM模拟结果的差异主要来源于:1)DDA和MSTM方法中黑碳聚集体和包裹层形状的差异造成EabsCabs的相对偏差分别为20%和23%;2)黑碳包裹层的相对位置变化导致光学结果具有2%~4%的相对偏差。因此DDA和MSTM方法的模型形状和结构差异导致光学模拟结果可能出现较大差异。
大气光学 黑碳气溶胶 混合结构 光吸收增强 单次散射反照率 光学模拟 
光学学报
2023, 43(6): 0601004
作者单位
摘要
1 泉州师范学院物理与信息工程学院 福建省先进微纳光子技术与器件重点实验室,福建 泉州 362000
2 泉州师范学院 化工与材料学院,福建 泉州 362000
制备了平面结构2D/3D混合钙钛矿(PEA)0.15FA0.85SnI3/SnO2异质结光探测器。研究发现,SnO2薄膜的引入可以调控(PEA)0.15FA0.85SnI3薄膜的晶体生长过程,有助于获得致密的连续薄膜。在520 nm单色光辐照下,器件的响应度高达3.19×105 A/W,相应的探测率为6.39×1015 Jones。在808 nm单色光辐照下,器件的响应度和探测器率也可分别达到1.70×104 A/W和7.28×1013 Jones。相关性能明显高于(PEA)0.15FA0.85SnI3单层薄膜光探测器。器件性能的提高一方面是由于钙钛矿薄膜表面形貌的改善,提高了器件的吸收效率和载流子收集效率;另一方面是由于(PEA)0.15FA0.85SnI3和SnO2之间形成了p?n结结构,从而有效提高了钙钛矿薄膜中的光生电子?空穴对的分离效率,降低了电子和空穴的复合几率。同时,(PEA)0.15FA0.85SnI3/SnO2界面处特殊的能级结构也可诱导器件产生光电导增益。
光探测器 Sn基钙钛矿 异质结 2D/3D混合结构 SnO2 photodetector Sn perovskite heterojunction 2D/3D hybrid structure SnO2 
发光学报
2022, 43(7): 1121
作者单位
摘要
1 中国电子科技集团公司 第二十四研究所, 重庆 400060
2 中国电子科技集团公司 第二十六研究所, 重庆 400060
现代宽带数字接收机对高性能模数转换器(ADC)的需求逐渐增大,而电子学ADC因载流子迁移速率限制无法实现超宽带直接数字采样。基于光子技术超宽带、超高速的特性,文章提出了一种光电混合结构的ADC技术。通过采用基于超短光脉冲的光学采样代替基于电子学半导体技术的采样/保持(S/H)电路来大幅提高采样带宽。采用时分复用及多通道电学ADC量化技术实现信号数字编码。最后通过数字域均衡与线性化处理提高系统性能,实现了对频率大于24 GHz的微波信号的直接采样,采样信噪比大于40 dB,为超宽带微波信号高精度直接数字化提供了有效途径。
光电混合结构ADC 光学采样 低时钟抖动 电学量化 photoelectric hybrid ADC optical sampling low clock jitter electrical quantization 
微电子学
2021, 51(4): 466
作者单位
摘要
玉林师范学院物理科学与工程技术学院 复杂系统优化与大数据处理广西高校重点实验室, 广西 玉林 537400
黑硅是一种能大幅提高器件光电转换效率的新型电子材料, 微纳混合结构黑硅是一种比普通黑硅材料更高效的新型黑硅材料, 如何制备出大面积、形貌特征好、表面洁净度高的黑硅材料是制备高效的黑硅太阳能电池的前提。首先, 利用湿法腐蚀方法, 通过设计合适的反应固体装置和良好的工艺控制手段, 在金字塔硅表面制备了大面积的微纳混合结构黑硅; 然后, 对其制备的关键工艺技术进行了研究讨论。实验结果表明, 该方法制备的微纳混合结构黑硅具有形貌特征好、表面洁净度高和低表面反射率等特征。有效去除表面银沉积物后, 该黑硅在300~1 100 nm范围内的加权平均反射率低至4.06%。该制备工艺方法适用于大面积高效微纳混合结构黑硅的规模制备, 在高效黑硅太阳能电池领域具有重要的应用价值。
金字塔结构 微纳混合结构 黑硅 太阳能电池 pyramid structure micro-nano structure black silicon solar cell 
发光学报
2017, 38(11): 1486
作者单位
摘要
曲阜师范大学物理工程学院,曲阜 273165
为了研究晶体结构对电磁波传输特性的影响,提出了一种空气平板层和圆形复合介质柱混合组成的新型2维混合介质柱光子晶体结构。采用时域有限差分法对其进行了数值模拟和计算,研究了改变混合介质柱的形状和结构参量对晶体透射特性的影响。结果表明,该结构可以基本保留组合前光子晶体的主带隙,并且在新的频段产生新的禁带;在混合结构中将复合介质柱换为简单介质柱没有新的禁带产生。通过改变相关参量发现,增加介质平板的宽度,这增大内嵌介质柱的半径都有利于新禁带的产生。2维混合介质柱光子晶体比单一介质柱光子晶体有更多的可调因素,这为相关光子晶体器件的设计提供了理论依据。
光电子学 光子晶体 时域有限差分法 混合结构 光子带隙 optoelectronics photonic crystals finite difference time domain method hybrid structure band gap 
激光技术
2010, 34(3): 294
作者单位
摘要
1 长春理工大学理学院, 吉林 长春 130022
2 西安应用光学研究所, 陕西 西安 710065
研究了一种混合掺铒/铒镱共掺光纤放大器, 用掺铒光纤放大器作为输入信号的预放大器, 用铒镱共掺双包层光纤放大器作为主放大器。掺铒光纤放大器采用20m长掺铒光纤作为增益介质, 采用最大输出功率318mW的单模半导体激光器二极管作为泵浦源, 预放大器获得的最大输出功率是113mW。铒镱共掺光纤放大器采用14m长铒镱共掺双包层光纤作为增益介质, 采用2个915nm多模半导体激光二极管作为泵浦源, 在输入信号功率为10mW、信号波长1555nm时, 混合光纤放大器获得了最大输出功率为32.04dBm, 即1.6W, 与此相应的混合光纤放大器的光-光转换效率为18.5%。
光电子学 高功率光纤放大器 混合结构 铒镱共掺双包层光纤 optoelectronics high power fiber amplifier hybrid structure Er3+-Yb3+ co-doped double-cladding fiber 
应用光学
2010, 31(3): 473

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!