作者单位
摘要
苏州科技大学, 绿色印刷纳米光子工程技术研究中心, 材料科学与工程学院, 江苏 苏州 215009
上转换发光是一种将长波长的激发光转化为短波长发射的反斯托克斯发光现象, 三线态-三线态湮灭上转换(TTA-UC)能够在较低密度能量下被激发, 且上转换量子产率高, 因此获得研究者们广泛关注。 关于敏化剂分子结构与上转换发光性能相关性的研究一直是TTA-UC研究领域的重要热点, 选择两种代表性的卟啉钯光敏剂[PdOEP-八乙基卟啉钯(Ⅱ)和PdBrTPP-四溴苯基卟啉钯(Ⅱ)]与蒽衍生物9,10-(4-羟甲基)苯基蒽p-DHMPA发光剂组合上转换体系作为研究模型, 通过一系列合成工作获得材料分子后, 进一步比较两种敏化剂的光谱性质与体系最终上转换性能之间关系。 通过细致研究敏化剂和发光剂的荧光发射和寿命等光谱性质对敏化剂系间窜越, 三线态-三线态能量转移及三线态-三线态湮灭等能量传递过程的影响后, 发现在532 nm处的摩尔吸光系数PdBrTPP (10.8 cm-1·mmol-1)大于PdOEP (3.0 cm-1·mmol-1); 三线态寿命PdBrTPP (173.13 μs)大于PdOEP (109.21 μs)。 但与p-DHMPA配对时光敏剂与发光剂的三线态能级差ΔETT, PdOEP (0.140 eV)却高于PdBrTPP (0.062 eV), 通过Stern-Volmer方程得到Stern-Volmer猝灭常数KSV和双分子猝灭常数kq值也是PdOEP略高, 最终表现出上转换阈值PdOEP/p-DHMPA (22.40 mW·cm-2)小于PdBrTPP/p-DHMPA (29.78 mW·cm-2), 上转换发光效率ΦUC, PdOEP/p-DHMPA (28.3%)大于PdBrTPP/p-DHMPA (26.8%)。 因此, 卟啉钯敏化剂的构效对三重态湮灭上转换发光效率影响最为重要的决定因素是敏化剂三线态高低。 对于不同的敏化剂, 在分子主体结构、 摩尔吸光系数与三线态寿命等光谱参数差别不大的情况下, 敏化剂的三线态能级越高, 就将会具有更大的上转换发光效率。 然而如果以总上转换能力指标来评价, PdBrTPP的共轭结构能够提升其在激发波长处吸收更多光子的能力, 具有比PdOEP更高的摩尔吸光系数, 造成其总上转换能力η比PdOEP高3.4倍。 因此从上转换总效能指标来评价, 通过敏化剂分子设计调控其在激发光波长处的摩尔吸光系数也不失为一种简单易行的方法。
三线态-三线态湮灭 上转换 敏化剂 构效关系 三线态能级 摩尔吸光系数 Triplet-triplet annihilation Upconversion Sensitizer Structure/performance correlation Triplet energy level Molar absorption coefficient 
光谱学与光谱分析
2021, 41(1): 71
作者单位
摘要
中国石油大学(华东) 理学院, 山东 青岛 266580
染料敏化剂是染料敏化太阳能电池中关键的光电转换材料, 其受光激发后, 电子由低能级基态跃迁到高能级激发态从而产生有效的电势差。设计和筛选优异性能的染料敏化剂有利于提升其光电转化效率。本文以相关实验研究为背景, 设计了一系列具有不同桥位基团的四硫富瓦烯(TTF)类纯有机染料敏化剂, 利用密度泛函理论(DFT)和含时密度泛函理论(TD-DFT)对其光电转化及分子内电子转移特性进行了系统研究, 通过比较筛选出了高性能的四硫富瓦烯类染料敏化剂。研究结果表明, 以环戊联噻吩及其衍生物作为桥位基团的四硫富瓦类染料敏化剂的整体性能更佳, 主要表现在较好的电荷分离态、拓宽的光谱吸收范围、提升的光捕获效率以及增强的分子内电子转移(IET)性能等。
四硫富瓦烯类染料敏化剂 密度泛函理论 光电转换 分子内电子转移 tetrathiafulvalene-based metal-free dye sensitizer density functional theory photoelectric conversion intramolecular electron transfer 
发光学报
2020, 41(3): 288
吴启晓 1,2,*赵谡玲 1,2徐征 1,2宋丹丹 1,2[ ... ]左鹏飞 1,2
作者单位
摘要
1 北京交通大学发光与光信息技术教育部重点实验室, 北京 100044
2 北京交通大学光电子技术研究所, 北京 100044
为了探究泵浦功率对不同浓度敏化剂离子掺杂的上转换材料发光特性的影响, 采用溶剂热法, 成功制备了不同浓度敏化剂Yb3+掺杂的NaYF4∶Yb3+, Er3+上转换纳米颗粒。 首先对这种纳米晶体的结构和形貌进行了详细的分析, 使用X射线粉末衍射仪和透射电子显微镜测试了制备的纳米晶体的结构和形貌。 表征结果证明了制备的纳米颗粒均为结晶性良好、 形状规则的六方相纳米晶体, 随着Yb3+掺杂浓度的提高, 纳米晶体的粒径有所增加。 在此基础上, 通过控制泵浦功率对不同浓度敏化剂Yb3+掺杂的NaYF4∶Yb3+, Er3+上转换纳米颗粒在980 nm激发光下的光致发光特性做了详细的研究。 对于不同浓度敏化剂掺杂的样品, 随着泵浦功率的提高, 上转换发光的强度增强, 这可以归因于高泵浦功率促进材料对激发光的吸收。 上转换发光的红绿比也得到了提高, 值得注意的是, 在不同浓度敏化剂Yb3+掺杂的样品中, 发光的红绿比改变的程度和可调谐的范围有所不同。 为了深入的了解上转换发光机制, 对不同浓度样品中可能发生的电子能量传递机制进行了讨论并提出假设, 认为上转换发光过程中, 不同浓度样品中红绿比变化程度的不同是发光离子组合之间的平均距离和包括多声子弛豫、 交叉弛豫和反向能量传递的非弛豫过程的综合作用。 在低浓度敏化剂掺杂的样品中, 由于掺杂浓度导致Yb3+和Er3+之间的平均距离较大, 反向能量传递过程比较微弱。 在非弛豫过程中, 发生在同一发光中心Er3+上的多声子弛豫和相邻发光中心Er3+之间的交叉弛豫为主要过程。 随着泵浦功率的提高, 高能级的布居速率增加减弱了非辐射弛豫对发光的影响, 材料的红绿比只有微弱的提高, 绿光是上转换发光中的主要成分。 随着掺杂浓度的提高, 敏化剂离子Yb3+和激活剂离子Er3+之间的平均间距减小, 反向能量传递过程得到增强, 成为非辐射弛豫过程中的主要部分。 由于泵浦功率增强而提高的高能级对上转换发光的贡献, 通过相邻敏化剂和激活剂离子之间的反向能量传递过程得到迅速的衰减, 使红光成为上转换发光中的主要成分。 在980 nm的近红外光激发下, 在不同浓度Yb3+掺杂的样品中存在不同侧重的非辐射弛豫过程, 由于多声子弛豫、 交叉弛豫和反向能量传递共同作用, 红绿比随着泵浦功率提高而增加。 这种发光特性不但使得我们得到红光性能更好的上转换荧光材料, 而且可以通过测定材料的红绿比来判定材料的掺杂浓度。 经过进一步的设计和修饰, 这种纳米材料很有潜力作为一种多功能光动力治疗纳米平台在生物检测领域中得到应用。 不同浓度样品中可能发生的电子能量转移过程的提出, 有利于对上转换发光机理的了解和稀土发光离子组合的设计和优化。
上转换发光 敏化剂掺杂 NaYF4∶Yb3+ NaYF4∶Yb3+ Er3+ Er3+ UCNPs Sensitizer-doped 
光谱学与光谱分析
2019, 39(5): 1406
作者单位
摘要
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
solar cells sensitizer ruthenium complex porphyrin organic dye 
Frontiers of Optoelectronics
2013, 6(4): 373
作者单位
摘要
1 太原理工大学 新材料界面科学与工程教育部重点实验室, 山西 太原 030024
2 中国科学院 苏州纳米技术与纳米仿生研究所, 江苏 苏州 215123
3 太原理工大学 新材料工程技术研究中心, 山西 太原 030024
基于新型聚合物白光材料PF-DTFO制备了一种聚合物白光发光二极管(PWOLED),通过在聚合物发光层中掺杂蓝光磷光染料FIrpic,利用磷光敏化发光原理,改善器件电致发光性能。在敏化PWOLED中,掺杂的FIrpic染料作为给体将产生的三重态能量传递给白光聚合物的长波发射基团,进一步提高了长波基团的发光强度,改善了白光光谱,使基色更平衡并且光谱更稳定。驱动电压从8 V增加到16 V时,器件电致发光光谱基本不变,色坐标仅从(0.33,0.38)移动至(0.32,0.38)。敏化后的器件发光效率相对于未掺杂器件提高了38%。
聚合物 有机发光二极管 磷光敏化 polymer OLED phosphorescence sensitizer 
发光学报
2012, 33(4): 440
作者单位
摘要
1 Department of Chemistry, Wuhan University, Wuhan 430072, China
2 Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science & Technology, Shanghai 200237, China
pyrrole synthesis dye sensitizer oligomer 
Frontiers of Optoelectronics
2011, 4(1): 87
作者单位
摘要
1 新疆师范大学 物理与电子工程学院, 新疆 乌鲁木齐830054
2 中国科技大学 物理学院, 安徽 合肥230060
3 新疆伊犁师范学院 凝聚态相变与微结构自治区重点实验室, 新疆 伊宁835000
采用共沉淀法合成了LaF3∶Ho3+,Yb3+ 红外下转换材料, 研究了室温下该材料的激发光谱、发射光谱特性和发光的时间衰减曲线。在LaF3∶Ho3+,Yb3+ 粉末中, 观察到了Ho3+ 到Yb3+ 的能量传递, 并通过分析确认了其为共振能量传递。通过Ho3+ 到Yb3+ 的共振能量传递过程, 可以将材料吸收一个300~360 nm波段的紫外光子转化为两个波长在1 μm附近的红外光子。Yb3+ 的发射正好与硅太阳能电池的吸收匹配, 材料中的这一红外下转换现象对于提高硅太阳能电池的效率具有积极意义。
稀土发光材料 近红外量子剪裁 Ho3+敏化剂 光伏电池 rare earth luminescent materials near-infrared quantum cutting Ho3+ sensitizer solar cells 
发光学报
2011, 32(11): 1133
作者单位
摘要
北京交通大学发光与光信息技术教育部重点实验室, 北京交通大学光电子技术研究所, 北京 100044
在荧光材料中掺杂合适的磷光敏化剂,可以大大提高荧光有机电致发光器件(OLED)的效率。选择磷光材料知fac-tris(2-phenylpyridinato-N,C^2′)iridium(Ⅲ)(Ir(ppy)3)分别与荧光材料4-(dicyanomethylene)-2-t-butyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl(DCJTB)、5,6,11,12,-tetraphenylnaphthacene(Rubrene)掺杂作为发光层,当掺杂质量比合适时,磷光材料的发光消失,得到了纯正的荧光材料的发光。同时,对磷光材料的敏化作用及发光机制进行了分析,比较了Ir(ppy)3对两种不同荧光材料的敏化作用强弱,发现Ir(ppy)3对荧光材料Rubrene的敏化作用更强。对影响敏化作用的因素进行了分析,推测其原因与磷光材料和荧光材料的相容性质有关。
磷光敏化剂 荧光 能量传递 Phosphorescent sensitizer Fluorescence Energy transfer 
光谱学与光谱分析
2009, 29(10): 2626
作者单位
摘要
1 北京交通大学 光电子技术研究所,北京交通大学发光与光信息技术教育部重点实验室,北京 100044
2 河北大学 物理科学与技术学院,河北 保定 071002
OLED技术被认为是最有可能取代液晶显示的全新技术,而OLED中的有机电致磷光器件是近年来的研究热点。有机电致磷光器件的发光层往往采用主客体掺杂体系,主客体分子内的能量传递是磷光发光体分子被激发的主要途径,因此选择吸收能量和传递能量好的主体材料是改进有机电致磷光器件性能的主要途径之一。文章分别以PVK和CBP作为主体材料,以磷光材料Ir(ppy)3和荧光材料Rubrene作为掺杂剂,制备了不同配比的器件,研究了主体材料和掺杂剂之间的能量传递特性。结果发现,这两种主体材料分别通过Ir(ppy)3向Rubrene传递能量是主要的能量传递机制,而且CBP作为主体时能量传递比PVK更充分。另外掺入Ir(ppy)3后的器件比不掺Ir(ppy)3的器件在相同电压下的光功率明显增强。当我们增加Ir(ppy)3 的浓度时,相同电压下的光功率下降,浓度猝灭效应增强。
有机电致发光 能量传递 敏化 三线态 Organic electroluminescence device Energy transfer Sensitizer Triplet 
光谱学与光谱分析
2009, 29(1): 1

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!